MAPA DE RECURSOS MINERALES
DE LA REPÚBLICA DOMINICANA
ESCALA 1:100.000
SANTIAGO DE LOS CABALLEROS
(6074)

Santo Domingo, R.D., Enero 2007-Diciembre 2010
ÍNDICE
1 INTRODUCCIÓN

El presente Mapa y Memoria forma parte del Programa de Cartografía Geotemática de la República Dominicana, Proyecto 1B, financiado en consideración de donación por la Unión Europea a través del programa SYSMIN II de soporte al sector geológico-minero (Programa CRIS 190-604, ex No 9 ACP DO 006/01). Ha sido realizada en el periodo 2007-2010 por el Instituto Geológico y Minero de España (IGME), formando parte del Consorcio IGME-BRGM-INYPSA, con normas, dirección y supervisión del Servicio Geológico Nacional, habiendo participado los siguientes técnicos y especialistas:

- Pedro Florido Laraña (IGME)
- Eusebio Lopera Caballero (IGME)
- Alejandro Bel-lan Ballester (IGME)
- Fernando Pérez Cerdán (IGME)
- Sandra Martínez Romero (IGME)
- Ana María Cabrera Ferrero (IGME)

Ha colaborado en aspectos geológicos:

- José Ignacio Ramírez Merino (INYPSA)
- Pol Urien(BRGM)

La realización del Mapa de Recursos pretende dotar a los usuarios de él, de un instrumento orientativo, de fácil consulta y entendimiento, sobre la situación actual del sector de los recursos naturales en la zona y sobre la potencialidad de las distintas formaciones geológicas que puedan ser consideradas metalotectos interesantes a la hora de programar futuras investigaciones.

Para su confección se han seguido, en su mayor parte las normas recogidas en el documento “Programa Nacional de Cartas Geológicas a escala 1:50,000 y Temáticas a 1:100,000 de la República Dominicana” del Servicio Geológico Nacional, con algunas modificaciones consensuadas previamente entre las distintas partes.

La información elaborada consiste, además del mapa y la memoria que se presentan a continuación, en un “archivo de fichas de indicios” en los cuales figuran
los datos obtenidos en el reconocimiento de campo y en laboratorio (estudios microscópicos, análisis geoquímicos...) y la información complementaria recopilada en una “Base de datos informatizada de indicios mineros”.

La Base Topográfica a escala 1:100 000 utilizada es la reducida de los mapas topográficos a 1/50 000; solo se han representado las curvas de nivel maestras, cada 100m, para evitar el empaste de fondo en zonas con relieve muy pronunciado.

Para la elaboración de la Base Geológica del Mapa de Recursos Minerales se ha utilizado la realizada durante el presente proyecto (Consortio IGME-BRGM-INYPSA) a escala 1/50 000

1.1 SITUACIÓN GEOGRÁFICA.

El cuadrante a escala 1:100.000 de Santiago de Los Caballeros (6074) se sitúa en la mitad septentrional de la República Dominicana. El valle de El Cibao ocupa la zona central del cuadrante separando la Cordillera Septentrional en el tercio NE y la Cordillera Central en el extremo SO del Cuadrante.

Está constituido por las hojas a escala 1: 50.000 San Francisco de Arriba (6074-I), Santiago de los Caballeros (6074-II), San José de las Matas (6074-III) y Esperanza (6074-IV).
La República Dominicana ocupa aproximadamente los dos tercios más orientales de la Isla La Española, cuya superficie total es de unos 80.000 km2, lo que la convierte en la segunda isla más extensa de las Antillas Mayores. Desde el punto de vista fisiográfico la isla está constituida por cuatro alineaciones montañosas principales que, de norte a sur y según la toponimia dominicana, son la Cordillera Septentrional, la Cordillera Central, la Sierra de Neiba y la Sierra de Bahoruco, separadas por tres grandes valles según el mismo orden, el Valle del Cibao, el Valle de San Juan y el Valle de Enriquillo. La orografía de la isla es muy accidentada, e incluye las mayores altitudes de las Antillas Mayores (picos Duarte y la Pelona, con 3087 m). Esta circunstancia revela una activa tectónica reciente, o neotectónica, puesta también de manifiesto por la elevación topográfica de numerosas áreas, fallas activas y una importante actividad sísmica, como los importantes terremotos registrados en los años 1751, 1770, 1842, 1887, 1911, 1946, 1948 y 1953.

1.2 ANTECEDENTES

Entre los estudios y documentos previos de carácter geológico-minero, la República Dominicana dispone de un mapa geológico a escala de 1:250.000, denominado "Mapa Geológico de la República Dominicana", publicado en 1991. Las
referencias sobre la geología de la Hispaniola son numerosas y han sido publicadas en revistas internacionales principalmente. Una síntesis de la bibliografía geológico-minera básica puede encontrarse en el Special Paper 262 (1991) de la Sociedad Geológica de América. Existen informes inéditos, de carácter minero, realizados por la compañía Rosario Dominicana en el ámbito del Proyecto. Como resultado de la cooperación Dominico-Alemana, entre los años 1984 y 1988, se elaboraron distintos mapas a escalas variables, entre 1:100.000 y 1:25.000, de los sectores Norte y Sur de la Cordillera Central y del sector Oeste de la Cordillera Septentrional.

Más recientemente, tienen un particular interés los volúmenes especiales de "Active strike-slip y collisional tectonics of the northern Caribbean Plate boundary zone", editado en 1998 por J. Dolan y P Mann (Spec. Pap. Geol. Soc. Am. vol 326) y que incluye abundante información sobre la geología de la República Dominicana; del Acta Geológica Hispánica (vol. 37), editado en 2002 por Pérez-Estaún et al., que actualiza la información geológica obtenida en el marco del Programa SYSMIN I; y del Boletín Geológico y Minero de España (vol. 118), publicado en 2007, que recoge una síntesis de los trabajos e investigaciones más recientes.

Además de ser un área de especial interés para el estudio de la neotectónica de la placa Caribeña y de los riesgos geológicos que ésta implica, la isla de La Española y, en concreto, el territorio correspondiente a la República Dominicana, también contiene un registro excepcional de la evolución del denominado Arco Isla Caribeño durante el Jurásico Superior y Cretácico, y de su deformación posterior por una tectónica transpresiva durante buena parte del Terciario.

Sin embargo, a pesar de esta importancia geológica, y con la excepción de diversas investigaciones y prospecciones mineras y petrolíferas de carácter local, la mayor parte de la isla ha carecido de estudios geológicos de detalle hasta bien entrados los años 1980, a partir de los cuales varios estudios han incrementado su conocimiento geológico.

Los principales trabajos desarrollados en la parte dominicana de la isla se han agrupado en el volumen especial (Special Paper 262) de la Sociedad Geológica de América (Mann et al., 1991). Posteriormente, otro volumen especial de la misma sociedad (Special Paper 326) trata los aspectos neotectónicos del margen septentrional de La Española, derivados de investigaciones recientes. Otros resúmenes de la geología de la isla se pueden encontrar también en Bowin (1975),

Desde el punto de vista cartográfico, en la República Dominicana sólo existía cartografía geológica a escala 1:100.000 de las hojas de San Juan (5972), Comendador (5872) y San Cristóbal (6171) a escala 1:50.000. De ellas, sólo la primera se publicó con una Memoria explicativa, y las otras dos están en período de revisión. En la elaboración de estas hojas no se utilizó ninguna normativa específica que sirviera de base para la realización de nuevas hojas geológicas.

Los proyectos SYSMIN de Cartografía Geotemática han venido a subsanar este vacío al establecer una sistemática para la elaboración de mapas geológicos y derivados a escala 1:50.000 y 1:100.000. El primero de estos proyectos, correspondiente a los cuadrantes 1:100.000 de Bonao, Constanza y Azua, fue ejecutado durante los años 1997-2000 por un consorcio de empresas españolas del que formaron parte el IGME, INYPSA y PROINTEC, con resultados muy satisfactorios. La primera Fase del Programa SYSMIN de la Unión Europea finalizó en 2004 con la realización del Proyecto de Cartografía Geotemática de la República Dominicana por el Consorcio IGME-BRGM-INYPSA, completando 47 Hojas geológicas a escala 1:50.000 y sus correspondientes Memorias, las cuales cubren aproximadamente un 60% del territorio. La ejecución de estos Proyectos ha venido a confirmar la validez de la normativa utilizada que, con algunas mejoras, ha sido la empleada en el Proyecto SYSMIN II.

Además de las cartografías temáticas, el principal resultado obtenido en el marco del Programa SYSMIN, en gran medida como consecuencia de integrar los nuevos datos multidisciplinares litoestratigráficos, estructurales, petrográficos, geoquímicos, geomorfológicos y mineros, es que la información y el conocimiento geológico-minero de la República Dominicana ha experimentado un importante avance, plasmado en recientes publicaciones y numerosas participaciones a congresos, como la exitosa XVIII Conferencia Geológica del Caribe realizada en Santo Domingo en el 2008.

Dicho conocimiento va a permitir la localización de nuevos recursos minerales, para invertir la evolución desfavorable del sector, a la vez que una mejor protección de la población frente a desastres naturales y una mejor gestión medioambiental del territorio
2 SÍNTESIS GEOLÓGICA

El presente capítulo sintetiza la geología establecida y cartografiada en las 4 hojas 1:50,000 del cuadrante 6074 durante la primera fase del presente proyecto.

2.1 CONTEXTO GEOLÓGICO – ESTRUCTURAL

Localizada en el borde norte de la placa Caribeña (Fig. 3), la geología de La Española resulta de la convergencia oblicua del margen continental de la placa de Norteamérica con el sistema de arco-isla Cretácico caribeño, la cual se inició en el Eoceno-Mioceno Inferior y continua en la actualidad (Donnelly et al., 1990; Mann et al., 1991, 1995; Draper et al., 1994). La geotectónica activa ha dado lugar a una fisiografía caracterizada por una alternancia de sierras montañosas y valles, que pueden ser agrupadas en diez zonas fisiográficas o morfogenéticas (Fig. 3). Generalmente, los límites de cada una de estas zonas están definidos por alineaciones morfoestructurales bien definidas y presenta características geológicas que la distinguen de sus zonas contiguas.
Figura 3. Configuración geodinámica de la Placa del Caribe
La Española ha sido dividida en varios terrenos tectonoestratigráficos (Fig. 5) en base a su diferente historia geológica, yuxtapuestos tectónicamente por zonas de desgarre de dirección ONO-ESE y edad post-Eoceño/Oligoceno (Mann et al., 1991). Estas zonas de falla son: Septentrional (ZFS), La Española (ZFLE), Bonao-La Guácara (ZFBG), San Juan-Restauración (ZFSJR) y Enriquillo-Plantain Garden (ZFEPG). Las rocas de estas unidades están regionalmente cubiertas por rocas sedimentarias siliciclásticas y carbonatadas de edad Eoceño Superior a Plioceno, que postdan la actividad del arco-isla y registran la colisión oblicua arco-continental, así como la subducción activa el margen meridional de la isla (Bourgeois et al., 1983; Mann et al., 1991, 1995; Calais et al., 1995; Dolan et al., 1998; Mann, 1999; Hernández Huerta y Pérez Estaún, 2002; Brink et al., 2009)
Figura 5. Mapa de los terrenos tectonoestratigráficos de La Española según Mann et al. (1991): (1) Samaná; (2) Puerto Plata-Pedro García-Río San Juan; (3) Altamira; (4) Seibo; (5) Oro; (6) Tortue-Maimón-Amina; (7) Loma Caribe-Tavera; (8) Duarte; (9) Tireo; (10) Trois Rivières-Peralta (11) Presq’ile du Nord-Ouest-Neiba; y (12) Hotte-Selle-Bahoruco. Zonas de Falla: ZFRG, Río Grande; ZFS, Septentrional; ZFBG, Bonao-La Guácara; ZFH, Hatillo; ZFLE, La Española; ZFE PG, Enriquillo Plantain Garden; ZFSJR, San José- Restauración; ZFLPSJ, Los Pozos-San Juan

De Norte a Sur los dominios tectonosedimentarios son los siguientes:

- Dominio de la Cordillera Septentrional y Península de Samaná, limitado al Norte por el Océano Atlántico y al Sur por la Falla Septentrional. Los materiales representados en la Cordillera Septentrional pertenecen a diversos dominios sedimentarios depositados sobre distintos complejos de basamento. Por un lado, en la parte más septentrional, se encuentran diversos complejos dominados por rocas que han sufrido un metamorfismo de alta presión y que pertenecían a la Placa de Norteamérica. Actualmente se encuentran desmembrados, formando diversos macizos (Samaná, Río San Juan y Puerto Plata). En la parte meridional, los complejos de basamento están dominados por rocas volcánicas y vulcanosedimentarias, con algunas intrusiones plutónicas, y pertenecían a los diferentes complejos de arco de isla desarrollados en la placa del Caribe (Complejos de Pedro García, Palma Picada y El Cacheal). Por encima de todos estos complejos se encuentran potentes series de carácter fundamentalmente turbidítico, con episodios de margas de cuenca y facies de talud, que abarca una edad Oligoceno Superior a Plioceno Inferior.

- Dominio del Valle del Cibao, que abarca un conjunto de materiales de cobertura limitado al Sur por su discordancia basal. Las facies y litologías representadas son
bastante variadas yendo desde conglomerados aluviales a margas de cuenca con buena representación de facies de plataforma somera y construcciones arrecifales. La potencia máxima acumulada, con un rango de edades Mioceno medio a Plioceno Superior, podría superar los 4000 m en su sector central, en las proximidades de la Falla Septentrional que constituye el límite Norte del dominio. En conjunto se trata de una cuenca con una historia compleja, que incluye en la parte alta del Plioceno la formación de subcuencas, dispuestas de forma escalonada, en las que se acumularon grandes espesores de sedimentos. A estos materiales hay que añadir los depósitos aluviales que rellenan en la actualidad el valle del Yaque.

- El dominio de Amina-Maimón, aflora bajo la discordancia basal del dominio del Valle del Cibao y probablemente constituye, en gran parte al menos, su zócalo. El límite Sur de este dominio coincide con el extremo Norte de la Zona de Falla de La Española. Los materiales representados, pertenecientes al Complejo de Amina-Maimón, son depósitos vulcanosedimentarios, de edad Cretácico Inferior. Presentan una intensa deformación y metamorfismo, y no se encuentran nunca al Sur de la Falla de La Española.

-El dominio de Magua-Tavera tiene su área de afloramiento limitada por el sur por la Zona de Falla de La Española, y está ocupado por una serie compleja, al menos en parte sintectónica, y con espesor de difícil evaluación que incluye materiales volcánicos y vulcanosedimentarios, brechas de talud, series turbidíticas, calizas de plataforma y conglomerados deltaicos y fluviales, todo ello con un rango de edades comprendido entre el Eoceno Inferior y el Oligoceno Inferior.

- El dominio de la Cordillera Central se caracteriza por su gran complejidad y está limitado al Sur por la Falla de San José-Restauración. Los materiales más antiguos que afloran en este dominio son depósitos volcánicos y vulcanosedimentarios, de edad Jurásico Superior-Cretácico Inferior, que presentan una deformación polifásica y son los incluidos dentro del Complejo Duarte. Sobre este “zócalo” se depositó una potente serie vulcanosedimentaria a la que siguen depósitos de talud y calizas pelágicas, todavía durante el Cretácico Superior, y finalmente calizas de plataforma de edad Eoceno. Todos estos materiales están afectados por deformaciones de carácter transpresivo de intensidad variable según zonas y, además, han experimentado numerosas intrusiones, principalmente de carácter ácido, y diversos grados y tipos de metamorfismo.

- El dominio del Cinturón de Trois Rivieres-Peralta está limitado al norte por la Zona de Falla de San José-Restauración, y por el sur por la Falla de San Juan-Los
Pozos e incluye una potente serie con un rango de edades entre el Cenomaniense y el Mioceno Inferior. Los materiales y facies representados son muy diversos, con predominio de turbiditas y calizas pelágicas, pero incluyendo también materiales vulcanosedimentarios, calizas pelágicas y de plataforma, e importantes depósitos sintectónicos.

- El dominio de la **Cuenca de San Juan** se sitúa inmediatamente al sur de la Zona de Falla de San Juan-Los Pozos. Los materiales representados, en parte sintectónicos, abarcan un rango de edades desde el Oligoceno superior al Plio-Pleistoceno. Constituyen en conjunto una serie de relleno de cuenca pasándose de facies turbidíticas gradualmente hasta depósitos fluviales.

- La **Sierra de Neiba**, al sur de la Cuenca de San Juan, forma parte del denominado terreno de Presqu’île du Nord-Ouest-Neiba, unidad definida con poca precisión y que en su descripción original también incluye la cuenca de Enriquillo (Mann et al., 1991b). Con directrices cambiantes de ONO-ESE a NO-SE o a E-O, determinadas por la sucesión, en relevo, de pliegues de gran radio y relativamente discontinuos en dirección, esta sierra está formada casi enteramente por litologías calcáreas de edad Eoceno-Mioceno Inferior y, en menor proporción, por litologías margo-calcáreas de edad Mioceno. El límite sur de la Sierra de Neiba, con la cuenca de Enriquillo, corresponde a un límite tectónico formado por una zona de cabalgamientos de relativo alto ángulo con vergencia sur, retocados o asociados a desgarres.

- La **Cuenca de Enriquillo** se extiende con una dirección ONO-ESE entre las sierras de Neiba y Bahoruco, y al sur de la sierra de Martín García. El dominio se prolonga también por el norte de esta sierra, donde conecta con la Cuenca de Azua, que a su vez conecta con la de San Juan, de tal forma que las tres comparten buena parte de su evolución. La cuenca de Enriquillo está rellena por materiales del Mioceno al Cuaternario que, en conjunto, conforman una macrosecuencia somerizante de más de 4.000 de espesor, con ambientes marinos en la base y continentales a techo. Es destacable la presencia en esta cuenca de formaciones evaporíticas de importante espesor.

- La **Sierra de Bahoruco** constituye el dominio geológico más meridional de La Española, y forma parte del terreno Hotte-Serre-Bahoruco. Está constituido por un basamento volcánico de edad Cretácico superior, que representa una porción aflorante de la meseta caribeña. Sobre estos materiales volcánicos y sedimentarios pelágicos
se encuentra una secuencia principalmente carbonatada, con diversas unidades representadas por calizas de plataforma somera hasta facies de plataforma más externa, de edad Eoceno-Plioceno, que muestran una evolución sedimentaria controlada fundamentalmente por el eustatismo hasta el Plioceno, donde se registra el efecto de la falla transfer de Beata que contribuye, en parte, a la elevación de la Sierra de Bahoruco, producto de una situación geodinámica de convergencia oblicua y transpresión generalizada en toda la isla.

Dentro del presente cuadrante los materiales representados corresponden exclusivamente a los dominios del Valle del Cibao, de Amina-Maimón, de Magua-Tavera y, muy poco representado, de la Cordillera Central.

Esta división se integra con los estudios realizados en la República Dominicana, en buena parte enmarcados dentro del Programa SYSMIN, que han permitido distinguir geológicamente de Norte a Sur (Fig. 6):

1) Un prisma de acreción (o complejo de zona de subducción) exhumado durante la colisión del arco de islas con el continente de Norte América, que incluye: los complejos de rocas de alta presión de Puerto Plata, Río San Juan y Samaná, con mélanges tectónicas de matriz serpentinitica y sedimentaria; y la cuenca turbidítica de antearco/antepaís suprayacente, rellena con las unidades siliciclásticas del Eoceno Inferior-Oligoceno y carbonatadas del Mioceno Superior-Cuaternario (Donnelly y Rogers, 1980; Draper y Nagle 1991; Joyce 1991; Pindell y Draper, 1991; Draper et al., 1997; De Zoeten y Mann, 1999; Mann, 1999; Gonçalves et al. 2000; Escuder-Viruete y Pérez-Estaún, 2006; Pérez Varela y Abad, 2008).

2) El arco isla primitivo del Cretácico Inferior, que incluye las rocas volcánicas y volcanoclásticas de la Fm Los Ranchos y los Esquistos de Maimón y Amina, los cuales resultan ser petrológica y geoquimicamente equivalentes (Bowin, 1975; Draper y Lewis, 1991; Kesler et al., 1990, 2005; Lebron y Perfit, 1994; Lewis et al., 1995, 2000, 2002; Joubert et al., 2004; Escuder-Viruete et al., 2004, 2006). El Complejo Río Verde situado estructuralmente al SO representa el arco fallado o la cuenca de trasarco adyacente al frente volcánico (Escuder-Viruete et al., 2009). La Fm Los Ranchos está estratigráficamente recubierta por la potente secuencia sedimentaria siliciclástica de la Fm Las Guayabas. Esta unidad está formada por areniscas con abundantes terrígenos derivados de la erosión de un arco isla,
por lo que se interpreta constituyen el relleno de la cuenca de delantera del Arco Isla Caribeño del Cretáceo Superior (García Senz et al., 2004).

3) Un cinturón de peridotitas serpentinizadas, denominado Peridotitas de Loma Caribe (Lewis et. al, 1999, 2006; Draper et al., 1996), y las unidades volcano-plutónicas oceánicas relacionadas (Escuder-Viruete et al., 2006, 2008).

4) Un complejo metamórfico de edad Jurásico Superior-Cretáceo Inferior, compuesto por la asociación volcano-plutónica de Loma La Monja (Escuder-Viruete et al., 2008) y el Complejo Duarte (Palmer, 1979), que se interpreta como derivado de una meseta oceánica (Draper y Lewis, 1991; Lewis y Jiménez, 1991; Montgomery et al., 1994) edificada sobre un sustrato oceánico de basaltos, sedimentos pelágicos y radiolaritas de procedencia Pacifica (Montgomery et al., 1994). El Complejo Duarte incluye pircitas olivínicas y basaltos ricos en Mg geoquímica e isotópicamente similares a los magmas generados por una pluma mantelica (Lapierre et al., 1997, 1999, 2000; Escuder-Viruete et al., 2005, 2007).

5) La secuencia de arco magmático del Cretácico Superior, representado principalmente por el Grupo Tireo, y que está intruida por los batolitos gabro-tonalíticos de Loma de Cabrera, Loma del Tambor, El Bao, Jumunuco, El Río y Arroyo Caña, incluyendo complejos ultramáficos y plutones de leucotonalitas foliadas (Lewis et al., 1991, 2002; Contreras et al., 2004; Escuder-Viruete et al., 2004; Joubert et al., 2004; Stein et al., 2004). Sobre estos materiales tuvo lugar la extrusión de la potente Fm Basaltos de Pelona-Pico Duarte, que registra un magmático intraplaca relacionado con los eventos más tardíos de construcción del Plateau Oceánico Caribeño en el Campaniense-Maastrichtiense (Escuder-Viruete et al., 2009).

6) Las formaciones sedimentarias Eoceno Inferior/Medio-Oligoceno, desarrolladas por detrás del arco isla contemporáneamente a la colisión entre el arco isla y el continente Norteamericano, representadas por el Cinturón de pliegues y cabalgamientos de Peralta-Trois Rivières y la cuenca de antepais relacionada de San Juan (Heubeck et al., 1988; Dolan et al., 1991; Hernáiz Huerta y Pérez-Estaún, 2000; Pérez Varela y Abad, 2008).

7) Las formaciones neógenas y actuales que rellenan las cuencas de Azua y Enriquillo (Mann et al., 1991, 1999; Díaz de Neira y Solé Pont, 2002),
sedimentadas en relación a la formación de la nueva zona de subducción meridional, o Fosa de Los Muertos, y en la que el sustrato oceánico del Mar Caribe subduce bajo la Isla de La Española.

8) Un fragmento levantado del plateau oceánico del Caribe, aflorante en la Sierra de Bahoruco, constituida por basaltos oceánicos del Cretácico Superior y que constituyen el sustrato de la Dorsal de Beata y aparentemente buena parte del mar Caribe (Maurasse et al., 1979; Sen et al., 1996; Mann, 1999; Kerr et al., 2002).

El contacto entre el complejo de acreción-colisión septentrional y la secuencia de arco isla de la Fm Tireo, se realiza a través de la estructura más importante de toda la isla, la Zona de Falla de La Española a favor de la cual afloran las peridotitas serpentinizadas de Loma Caribe. Se trata de una falla de desgarre que resuelve un gran desplazamiento lateral, y aproxima y yuxtapone estos diferentes fragmentos litosféricos.
2.2 UNIDADES ESTRATIGRÁFICAS

2.2.1 Cretácico Inferior

2.2.1.1 Formación Ámina - Maimón

(4 y 5 de la base geológica)

La Formación Ámina-Maimón consiste en un conjunto de rocas esquistosas, de protolito esencialmente volcánico con intercalaciones sedimentarias, que presentan un variable grado de deformación y metamorfismo, desde rocas relativamente indeformadas con una gran proporción de minerales ígneos relictos, hasta rocas completamente recristalizadas con una bien definida fábrica planar.

Estos esquistos, forman el flanco septentrional del Cinturón Metamórfico Intermedio o Median Belt de Bowin (1960, 1966) y por extensión de la Cordillera Central.

Afloran en dos segmentos distintos de la República Dominicana, pero nunca se han reconocido al S de la Zona de Falla de La Española:

- El segmento Ámina, al NO (Hojas 1:50.000 de San José de las Matas, Monción, Santiago Rodríguez, Martín García y Dajabón), con una dirección ONO, limitado al sur por la Falla Española, y cubierto al NE por las formaciones discordantes del Terciario-Cuaternario

- El segmento Maimón, al SE (Hojas 1:50.000 de Fantino, Hatillo y Villa Altagracia), con una dirección NO, limitado al sur por la Falla de La Española y la Peridotita de Loma Caribe, y al NE por el Cabalgamiento de Hatillo con vergencia NE, superponiendo los esquistos sobre diferentes formaciones del Cretácico y Paleógeno.

La edad de los esquistos de Ámina-Maimón es desconocida. Las relaciones cartográficas en el segmento Maimón, sugieren una edad pre-Albiano (Draper et al.,
1995, 1996; Draper y Gutiérrez, 1997), con la caliza de Hatillo bien datada como Albiano, que se encuentra discordante sobre los Esquistos de Maimón y la Formación Los Ranchos.

La Formación Ámina-Maimón y su equivalente lateral la Formación Los Ranchos, representan el volcanismo toleítico bimodal de edad Cretáceo Inferior (pre-Aptense/Albense), relacionado con la formación del Primitivo Arco Isla Caribeño (PAIC) (Donnelly et al., 1990) y presente en todo el actual arco de isla de las Antillas Mayores (Lewis y Draper, 1990; Horan, 1995; Lewis et al., 1995; Lewis et al., 2002). Además, según datos de este Proyecto, estaría representando el cambio de afinidad toleítica a calcoalcalina, común en la evolución de los sistemas de arco.

Estas rocas han sido variablemente deformadas y metamorfofizadas en condiciones de la facies de los esquistos verdes de prehnita-pumpellita (Bowin, 1966).

Se han representado en la base geológica dos conjuntos litológicos: metaandesitas (4) y meta-riolitas (5).

2.2.2 Cretácico Superior – Eoceno Inferior. Complejo de Pedro García

(6 y 7 de la base geológica)

Está constituido por dos conjuntos litológicos: rocas vulcanoclásticas, piroclásticas y subvolcánicas de tipo andesítico y basáltico (6) y tonalitas (7). Ocupa una buena parte del cuadrante NO del cuadrante.

En general, estos materiales dan lugar a los relieves dominantes en dicho sector, con cotas comprendidas entre los 700 y 900 m de altura, entre los que se encaja profundamente el río Yasica y su afluente el Arroyo de Pedro García.

Litológicamente, se tratan de distintas rocas de naturaleza principalmente volcánica o vulcanosedimentaria. Se han observado rocas volcánicas de tipo lávico, brechas volcánicas y tufitas, rocas subvolcánicas granudas de tipo dolerítico y en menor proporción, rocas vulcanoclásticas de tonos versicolores y tamaños de grano grueso a microconglomerático con una alta proporción de componentes detríticos líticos volcánicos, que se pueden denominar como areniscas vulcanoclásticas microconglomeráticas.

Las rocas volcánicas lávicas coherentes incluyen basaltos con orto y clinopiroxeno, porfídicos; basaltos con plagioclasa y clinopiroxeno vesiculares;
basaltos andesícticos con plagioclasa, afaníticos; y andesitas porfídicas brechificadas y alteradas. Las intrusiones sin-volcánicas máficas incluyen gabros, melanogabros y melanodioritas hornbléndicas de grano grueso. Los depósitos piroclásticos consisten en tobas máficas lícticas y cristal-líticas de grano grueso, masivas y variablemente alteradas. Como depósitos volcanoclásticos o volcanogénicos aparecen tramos de areniscas tufáceas de grano grueso a microconglomeráticas, gradadas.

Los basaltos con plagioclasa y clinopiroxeno vesiculares están compuestos por fenocrístales milimétricos y submilimétricos, y por una mesostasia oscura de textura fluidal. Las plagioclases forman prismas idio- y subidiomorfos poco reemplazados zonalmente por agregados de albita, epidota y sericita. Los clinopiroxenos son de augita subidio y alotriomorfa, zonada, maclada y poco cloritizada. La matriz está compuesta por un entramado de microfenoblastos de plagioclases y material verde-marrón, micro y criptocristalino, resultante de la desestabilización de vidrio volcánico. La alteración tardi-magmática secundaria ha dado lugar en estas rocas a la formación de rellenos vesiculares de pumpellita, calcita, epidota, y sericita, en agregados granoblásticos o fibroso-radiales.

Los basaltos andesícticos con plagioclasa, afaníticos, están compuestos por fenocrístales de plagioclasa de idio- a subidiomorfas, con esporádicos de clinopiroxeno y olivino, en general reemplazados pseudomórficamente. Aparecen bastante recristalizadas por la alteración secundaria a agregados de albita, epidota y sericita. Se observan algunos fenocrístales de clinopiroxeno augita, formando también agregados microglomeroporífidos, y restos de olivino (raro). Ambos están variablemente reemplazados a agregados de epidota+esfena+clorita+ opacos, así como por un material amarillo amorfo. La matriz está compuesta por un entramado de microfenoblastos de plagioclases tabulares, cuya elongación define una textura magmática de flujo lávico, y material micro y criptocristalino muy oscuro, resultante de la desestabilización de vidrio volcánico y la alteración/oxidación de los opacos. Este material está variablemente reemplazado por un agregado de sericita, clorita, albita, óxidos de Fe-Ti y opacos. Se observan también un microenclave gabróico compuesto por un agregado cumulado de plagioclases prismáticas y piroxeno intersticial. La alteración tardi-magmática da lugar a reemplazamientos y relleno de las vacuolas milimétricas blanco-verdosas de calcita, epidota, albita, pumpellita, sericita y óxidos de Fe.

Las andesitas porfídicas se presentan a menudo brechificadas y muy alteradas. Son lavas vesiculares de composición desde andesítica a dacítica, y textura porfídica y
microporfidica, con una pasta volcánica microcristalina de composición cuarzo-feldespática. La plagioclase está variablemente transformadas zonalmente a epidota, prehnita, sericita, albita y cuarzo. Los fenocristales de cuarzo son subidio a xenomorfos, y aparecen recristalizados. La matriz es micro y criptocristalina desvitrificada, en la que se destacan abundantes microfenoblastos de plagioclasa, raros pseudomorfos de ferromagnesianos y opacos.

Los gabros, melanogabros y melanodioritas hornbléndicas de grano grueso agrupan un conjunto de rocas plutónicas máficas, con abundante hornblenda.

Los depósitos piroclásticos dominantes, tobas máficas líticas y cristal-líticas de grano grueso, masivas y variablemente alteradas, están compuestas por fragmentos de tamaño de grano grueso (>0,1 y <2 mm, generalmente) y de estructura interna masiva. Los clastos son tanto angulosos como subangulosos y redondeados, de naturaleza lítica (35-55%), vidrio volcánico recristalizado (10-15%), fragmentos de cristales (30-40%), y epimatrix (<5%). La abundancia relativa de líticos y cristales permite distinguir tobas líticas y cristal-líticas.

Por último, las rocas vulcanosedimentarias están compuestas por clastos de tamaño de grano que gradúa entre grueso y microconglomerático (>0,1 mm a <5 mm), de textura frecuentemente gradada. La naturaleza de los clastos es esencialmente volcánica, aunque también poseen una notable proporción de clastos de procedencia ígnea plutónica y metamórfica, por lo que se trata de depósitos volcánicos epiclásticos producidos por flujos de masas en un medio subacuoso.

Una de la controversias sobre esta unidad es su límite superior, puesto que el inferior no llega a verse en ningún punto de la Cordillera Septentrional. Todos los contactos que limitan a la Fm. Pedro García en la Hoja de San Francisco Arriba son tectónicos, por lo que ha sido imposible de establecer las relaciones originales con la formación suprayacente.

Se le asigna al conjunto una edad Cretáceo superior-Eoceno inferior, coherentes con la del Complejo de Palma Picada en las hojas de Imbert y Esperanza. La actividad volcánica se relaciona con el desarrollo del arco de isla correspondiente a esta edad.

2.2.3 Paleógeno

(8 a 13 de la base geológica)
2.2.3.1 Formación Magua

(8 y 11 de la base geológica)

La Formación Magua fue denominada así por Palmer (1979) por aparecer los mejores afloramientos a lo largo del río Magua. Esta formación se extiende a lo largo de toda la Zona de Falla de La Española, con anchura comprendida entre 1 y 2 Km; fuera de esta zona existen algunos afloramientos locales al N y NO de Monción.

Está representada por cuatro conjuntos litológicos principales: Un volcanismo básico constituido por lavas y brechas basálticas, volcanismo ácido, de escasa e irregular presencia, calizas y pizarras calcáreas y por último conglomerados.

El sustrato de esta formación lo constituyen rocas del Complejo Duarte, de la Formación Amina-Maimón y de la Formación Tireo.

La Fm Magua ocupa 19.3 km2 en el borde SO del cuadrante. Esta representada por dos conjuntos litológicos: Conglomerados rojizos (Inoa) con niveles arenosos y lutíticos de edad Paleoceno-Oligoceno inferior (8) y calizas conglomeráticas del Oligoceno-Mioceno inferior (11)

2.2.3.2 Formación Palma Picada

(9 de la base geológica)

Está constituido por rocas volcánicas y vulcanoderivadas: coladas basálticas, niveles piroclásticos, tobas. Se le asigna una edad probable Cretáceo superior-Eoceno inferior. Es correlacionable, al menos en parte, con unidad de Pedro García y El Cacheal y, a escala regional, con la Fm Tireo de la Cordillera Central, aunque se desconoce completamente la posición paleogeográfica original década uno de estos complejos

En el presente cuadrante aflora en la Hoja de Esperanza en cuatro afloramientos de reducidas dimensiones localizados en su borde NO, los cuales se prolongan hacia la vecina hoja de Imbert alcanzando en la misma una gran extensión superficial.

En la Hoja de Esperanza, los principales tipos petrográficos estudiados del Complejo de Palma Picada son rocas volcánicas lávicas e intrusiones sin-volcánicas máficas, depósitos piroclásticos generalmente de tamaño de grano brecha y toba de grano grueso, depósitos volcanoclásticos o volcanogénicos más finos y rocas carbonatadas recristalizadas, así como intrusiones de plutones subvolcánicos félsicos.
Las rocas volcánicas lávicas coherentes incluyen basaltos con orto y clinopiroxeno, porfílicos; basaltos con plagioclase y clinopiroxeno vesiculares; basaltos andesíticos con plagioclase, afaníticos; y andesitas porfídicas brechificadas y alteradas. Las intrusiones sin-volcánicas máficas incluyen gabros, melanogabros y melanodioritas hornblédnicas de grano grueso. Los depósitos piroclásticos consisten en tobas máficas líticas y cristal-líticas de grano grueso, masivas y variablemente alteradas. Como depósitos volcanoclásticos o volcanogénicos aparecen tramos de areniscas tufáceas de grano grueso a microconglomeráticas, gradadas.

La datación de esta unidad es complicada y de acuerdo con la cartografía 1:50.000 del presente proyecto se ha optado por asignarla a Paleoceno.

2.2.3.3 Formación Los Hidalgos
(10 de la base geológica)

Está constituida por tufitas calcáreas y limolitas con intercalaciones de calizas micriticas recristalizadas de colores grises y verdosos, estratificadas en capas gruesas. Se le asigna una edad Eoceno inferior-medio sin descartar que pudiera alcanzar el Cretáceo superior.

Aflora en la hoja de Esperanza, donde se localiza en cuatro pequeños afloramientos. Se trata de una unidad de naturaleza heterolítica, formada por calizas gris-verdosas estratificadas en bancos decimétricos de texturas comprendidas entre mudstone-wackstone a packstone bioclásticos, muy recristalizadas, y que se hacen predominantes hacia a parte superior de la formación. Alternan con paquetes decamétricos de rocas volcanoclásticas clasificables como areniscas tufíticas con tonos blanco-grisáceos en fresco, ocres por alteración, estratificadas en capas centimétricas y que presentan en ocasiones laminación paralela; y por rocas piroclásticas (tobas líticas) de naturaleza andesítica, tonos pardo-verdosos a pardo-rojizos, grano grueso a muy grueso (lapilli) y aspecto masivo. El techo de la formación está afectado por la discordancia erosiva de la base de la suprayacente Fm. Altamira.

Desde el punto de vista bioestratigráfico son muy pobres los datos recogidos en la hoja de Esperanza, puesto que son facies con pocos restos orgánicos difícilmente clasificables a nivel específico en sección delgada. Las dataciones micropaleontológicas obtenidas en la Fm. Los Hidalgos en el ámbito de la Hoja de Imbert definen sin mayor precisión el intervalo Eoceno Medio-Superior. Con estos datos, y teniendo en cuenta las edades absolutas obtenidas en el complejo Palma...
Picada, así como las edades de los materiales del ciclo suprayacente, se ha optado por dar a la Fm. Los Hidalgos una edad Eoceno Inferior-Medio, considerando muy probable que alcance el Eoceno Superior.

2.2.4 Eoceno Superior – Mioceno Superior

En este período tiene lugar la creación y relleno sedimentario de diversas cuencas que muestran características primordialmente turbidíticas junto con materiales bréchicos, conglomeráticos e incluso de carácter olistostromático. Todos ellos se sitúan por encima de una discordancia, de carácter regional, que marcaría el final de los procesos de colisión entre las placas del Caribe y Norteamericana y la exhumación de porciones del basamento metamorfizado en condiciones de alta presión y baja temperatura, la cual se produce en el Eoceno superior. Las condiciones o carácter profundo de las cuencas se mantiene prácticamente hasta el Mioceno Inferior, pues siguen llegando aportes de corrientes de turbidez, aunque como se verá posteriormente se puede observar una megasecuencia de somerización, con la aparición de niveles más calcareníticos a techo.

2.2.4.1 Formación Jánico

(12 de la base geológica)

La Fm Jánico está expuesta en una faja estrecha, al Sureste de la hoja de San José de Las Matas, en el límite con las hojas de Jánico y Santiago. Ocupa una superficie de 3.4 km². Corresponde a la parte alta de la Fm Jánico, Mejor representada en el cuadrante situado inmediatamente al sur. Se sitúa en el contexto de la Cordillera Central.

En el presente cuadrante está constituida por alternancias decimétricas rítmicas muy regulares de areniscas, margas siltosas y calizas arcillosas. El color es marrón a beige cuando están meteorizadas. Localmente como lo observado en la hoja de Jánico, al Sur, las areniscas pueden ser de grano más grueso a conglomerático y contener clastos centimétricos de margas finas. Los datos paleontológicos le asignan una edad Oligoceno superior-Mioceno Medio

2.2.4.2 Unidad Altamira – La Toca

(13 de la base geológica)
En este epígrafe se hace referencia a la Unidad Altamira – La Toca en el sentido que se le da en la cartografía 1:50.000 de la hoja de Santiago y corresponde con la Fm Altamira de la cartografía 1:50.000 de las hojas San Francisco de Arriba y Esperanza. Se han definido 4 miembros dentro de esta Unidad:

- **Miembro Canaleta Bonita.** Constituido por alternancias de areniscas y arcillas, localmente con lentejones conglomeráticos. Puede alcanzar más de 2000 m de potencia según De Zoeten y Mann (1999), aunque regionalmente varía notablemente, ya que rellena un surco fuertemente subsidente en cuyo fondo existían paleorelieves previos. Se le asigna una edad Eoceno superior-Oligoceno.

- **Miembro El Limón.** Constituido por tres subunidades:
 - **El Limón Inferior**, formado por conglomerados polimícticos clastosoportados. De edad Oligoceno superior.
 - **El Limón Intermedio**, constituido por alternancias rítmicas de areniscas y margas arcillosas con intercalaciones métricas a decamétricas de calizas micríticas blanquecinas y/o calizas arrecifales en ocasiones slumpizadas. Edad Oligoceno superior. P3.
 - **El Limón superior**, que está formado por conglomerados polimícticos clastosoportados. Oligoceno superior.

- **Miembro La Pocilguita.** Representa el miembro superior de la formación Altamira y constituye las lomas y relieves meridionales de la Cordillera Septentrional en una banda que en dirección ESE se extiende desde el meridiano de San Francisco Arriba hasta el borde S de la hoja. Morfológicamente da lugar a relieves suavemente alomados orientados según la dirección ESE-ONO, que es la principal de la Cordillera.

Litológicamente está constituido por alternancias rítmicas de areniscas y arcillas margosas y localmente, niveles carbonatados "slumpizados". El espesor del mb. La Pocilguita alcanza los 1300 m. (De Zoeten y Mann, 1999). Se le asigna una edad Oligoceno superior-Mioceno inferior-medio.
2.2.4.3 Formación La Toca

(14 de la base geológica)

Aflora esta unidad en una buena porción de la hoja, casi rodeando completamente los afloramientos de la Fm. Pedro García. Origina morfologías suavemente alomadas orientadas según la dirección principal de la Cordillera Septentrional.

Esta constituida por dos conjuntos litológicos: Alternancias rítmicas de areniscas y arcillas (Oligoceno-Mioceno inferior-medio?) y Conglomerados (Oligoceno)

- Alternancias rítmicas de areniscas y arcillas:

Litológicamente esta formada por una sucesión muy similar a la de la Fm. Altamira. Se tratan de alternancias rítmicas de areniscas ocres de grano fino a medio por lo general, más raramente de grano grueso, en capas normalmente centimétricas y de hasta 60 cm. de espesor, y margas arcillosas de tonos grises en fresco e igualmente ocres por alteración, en capas decimétricas por lo común. Localmente presentan intercalaciones, con espesores desde métricos a decamétricos, de microconglomerados y conglomerados polimícticos de cantos redondeados a subredondeados, similares a los descritos en el epígrafe siguiente.

La asociación de facies y las estructuras sedimentarias que presentan permiten interpretar esta unidad como una unidad depositada en ambientes de lóbulos
turbidíticos, donde aparecen representados prácticamente todos los subambientes y donde se reflejan diversos tipos de procesos de depósito. Sin embargo, predominan las facies turbidíticas depositadas en contextos profundos (*deep-marine turbiditic deposits*), en sentido amplio. Dominan, por tanto el depósito de corrientes de turbidez de baja densidad, con secuencias de Bouma parciales o truncadas entre sedimento pelágico, donde esporádicamente llegan flujos muy densos (*slope-apron*) o debris flow, producidos por desestabilizaciones en el talud, o por entrada de material en cañones submarinos, represenados por materiales clásticos gruesos (*microconglomerados y conglomerados*). También están presentes en menor proporción turbiditas de alta densidad (*high-concentration turbiditic currents*), que corresponden a niveles de arenas potentes.

En cuanto a la edad de la unidad, el muestreo ha resultado muy pobre en microfósiles. Se han clasificado foraminíferos como *Catapsydrax af. dissimilis* (Cushman y Bermúdez) y *Globigerinoides trilobus* (Reuss), además de otra microfauna banal como *Globigerina sp.*, *Globorotalia sp.*, *Globigerinoides sp.*, *Cibicides sp.*, *Brizalina sp.*, *Reophax sp.*, *Cassidulina? sp.* y *Pyrgo sp.* Esta microfauna es poco derivativa, pero concuerda con el intervalo Oligoceno-Mioceno inferior-medio? atribuido a la Fm. La Toca de acuerdo con los antecedentes bioestratigráficos.

- Conglomerados:

La presente unidad se localiza por todo el cuadrante NO de la hoja de San Francisco de Arriba y se continúa en la de Esperanza. Dada la mayor competencia y resistencia a la erosión y meteorización que presenta, constituye los relieves dominantes de numerosas lomas, como las del Alto del Chicharrón y del Alto de las Mercedes. Dan lugar generalmente a morfologías de *hog-backs* y cuestas.

Se tratan de conglomerados polimícicos bien redondeados a subredondeados y matriz-soportados, con cantos imbricados de rocas volcánicas de naturaleza andesítica, tonalitas, areniscas y calizas de plataforma recristalizadas. La moda de los cantos es de 5-6 cm, y el centil supera los 100 cm. Este nivel conglomerático puede alcanzar los 80-90 m de espesor.

Sedimentológicamente corresponden a depósitos producidos por corrientes de alta densidad de tipo *debris-flow*, generados por desestabilizaciones del talud y canalizados en cañones submarinos.
Por su relación genética con el resto de la Fm. La Toca, que engloba a la presente unidad conglomerática, se le atribuye una edad Oligoceno.

2.2.4.4 Conglomerado de Bulla

(15 de la base geológica)

Aflora fundamentalmente en el límite inferior de la hoja de San José de las Matas y aparecen algunos retazos en su continuación en la hoja de Santiago.

Está limitado al compartimento septentrional de la Zona de Falla de la Española salvo una ocurrencia que se extiende más al Sur, en la hoja de Jánico. Topográficamente corresponde a lomas con faldas abruptas poco alineadas con vegetación de pasto.

El conglomerado Bulla integra dos facies muy similares que no son cartografiables en detalle por sus organizaciones irregulares, lenticulares e interesтратificadas: conglomerados de mega clastos naranjos y conglomerados clasificados, gris beige a naranjo. La facies de mega-conglomerado constituye la faja meridional, que corresponde globalmente a la base de la unidad.

El conglomerado de mega clastos aflora en paredes de taludes en forma de masa homogénea de color naranja gris. Está compuesto de cantos heterométricos polimícticos, métricos a decimétricos, redondeados a semi-redondeados, no clasificados, matriz soportado. La matriz es aren-arcillosa, con granos gruesos subangulosos de color naranja. Los clastos y cantos del conglomerado son de origen intrusivo (tonalitas, diorita, gabros, anfibolitas) y volcanoclástico (meta basaltos etc.). También se han podido observar algunos esquistos. Los cantos tonalíticos más abundantes son los más redondeados y suelen presentar una arenización fuerte, lo que le confiere a esta unidad un aspecto muy característico. Esta facies es azoica.

El conglomerado clasificado presenta clastos soportados retrabajados, con estratificación discernible. Las secuencias grano-decrecientes, van de los términos conglomerados hasta términos arenosos con estratificaciones cruzadas e intercalaciones pluridecimétricas de lentejones de areniscas). No se observa fauna.

Los cantos redondeados, pluricentimétrico a decimétrico, son de de origen intrusivo (tonalitas, diorita, anfibolitas) y volcanoclastico (meta basaltos, etc.). La matriz es arenosa, no carbonatada, lo que distingue estas facies de los conglomerados con
matriz carbonata de la Fm Cercad suprayacente. A diferencia del mega-conglomerado, estas facies no contienen muchos cantos de tonalitas arenizadas.

La facies de conglomerado clasificado se dispone principalmente en la parte superior del conglomerado en contacto transicional con las facies básales de la Fm Cercado.

La potencia del conglomerado Bulla es muy variable (entre 500 m y 1000 m). en hoja de San José de Las Matas; desaparece hacia el Este en la Hoja de Santiago (a 1km del límite de Hoja).

La base del Conglomerado de Bulla es discordante sobre las formaciones Jánico y esquistos de Amina – Mimón.

2.2.4.5 Formación Las Lavas

(16 de la base geológica)

La Formación Las lavas solo se ha diferenciado como tal en la cartografía 1:50.000 de la Hoja de Esperanza. En el resto de las hojas se ha incluido en la Unidad Altamira – La Toca. En la Hoja de Esperanza se considera Formación las Lavas la constituida por los miembros Pocilguita y las tres unidades del Miembro El Limón, ya descritos en el apartado 2.2.4.2.

2.2.4.6 Formación Cercado

(17 de la base geológica)

La Fm Cercado aflora muy extensamente en el Dominio del Valle del Cibao y presenta una gran variedad de facies. Saunders et al. (1986) le atribuyen una edad Mioceno superior y una potencia de 150 m, aunque su espesor es muy heterogéneo según el autor y la zona considerada (150-400 m). Más recientemente, Maier et al. (2007) y Lutz et al. (2008) datan la parte alta de la serie como Messiniense. La parte media y basal de la formación es imposible de datar debido a la ausencia de fósiles con valor bioestratigráfico, aunque se le asigna, en general, una edad del Mioceno superior. Es por este motivo que no es completamente descartable una edad del Mioceno medio para la parte basal de la Fm.

La Fm Cercado se apoya en contacto discordante sobre las formaciones Jánico, Amina-Maimón y es concordante, inter-digitada o erosiva encima del Conglomerado.
Bulla. La potencia máxima de la Fm es de unos 400 m en las Hojas de Mao y Monción disminuyendo hacia el oeste para desaparecer en las proximidades de Pepillo Salcedo. Dentro de la Fm se diferencian tres secciones informales, una inferior predominantemente detrítica, una facies media de predominio margoso y una facies superior discontinua carbonatada y coralina (Calizas de Ahuyamas)

En el presente cuadrante La Fm. Cercado está constituida por:

Serie detrítica bioclástica. Esta constituida por conglomerados localmente calcáreos y biodetríticos, areniscas con siltitas laminadas, margas y biocalcarenitas de edad Mioceno Medio-Superior.

Calizas bioclásticas. Nivel o conjuntos de niveles de biocalizas masivas de edad Mioceno Superior.

Calizas de Ahuyamas: Calizas y calizas margosas arrecifales con alta bioturbación, de edad Mioceno Superior.

En conjunto la formación representa una secuencia transgresiva-regresiva con los niveles de máxima profundización en la parte alta del miembro medio, llegándose a producir una emersión a techo de la serie, con erosión total de las Calizas de Ahuyamas

2.2.5 Mioceno Superior – Plioceno

Durante el Mioceno superior y el Plioceno inferior tiene lugar un nuevo ciclo sedimentario, marcado por una discontinuidad, que en la Cordillera Septentrional se desarrolla en la base de la Fm. Villa Trina o la Fm. Los Haitises, mientras que en la Cuenca del Cibao se sitúa entre la Fm. Cercado (mb. calizas de las Auyamas) y la Fm. Gurabo.

Este intervalo cronológico está representado en la zona de la Cordillera Septentrional por la formación Villa Trina, definida en su origen por por Vaughan et al. (1921) y que presenta un miembro margoso inferior y un miembro carbonatado superior (miembro La Piedra).

A raíz de los trabajos cartográficos realizados en distintos dominios geológicos de la República Dominicana donde esta formación está presente (Península de Samaná y Cordillera Oriental, por ejemplo) se ha decidido unificar la nomenclatura litoestratigráfica para todos los dominios, por lo que se denominará a partir de aquí
como Fm. Los Haitises al miembro La Piedra, ya que es en dicha localización de la Bahía de Samaná donde alcanza su máxima expresión. Se restringe, pues, el nombre de Fm. Villa Trina a la parte inferior margosa con intercalaciones calcareníticas de la sucesión.

2.2.5.1 Formación Villa Trina

(18 de la base geológica)

Ocupa la mayor parte del sector NE de la Hoja de San Francisco de Arriba, aunque aflora también en pequeños sectores de la Hoja de Esperanza y Santiago. Se compone de dos miembros litológicos:

Margas calcáreas con niveles conglomeráticos.

Esta unidad constituye la base de la Fm. Villa Trina.

Está constituida por 15 m de calizas bioclásticas y margocalizas de tonos cremas en fresco, mal estratificadas en bancos métricos, que presentan intercalaciones decimétricas de gravas polimicticas de 2 a 3 cm de diámetro medio, bien redondeadas y formadas por rocas volcánicas, areniscas y calizas micríticas. Son numerosos los fragmentos de corales que engloban.

No se ha podido determinar microfauna, por lo que se les atribuye una edad de Mioceno superior, dada su posición basal dentro de la Fm. Villa Trina.

Margas con intercalaciones de calizas mudstone y calizas coralinas.

Da lugar a morfologías suavemente alomadas, sobre las que resaltan los escarpes de la Fm. Los Haitises suprayacente.

Está compuesta por más de 200 m de margas y margocalizas de tonos grises azulados, que intercalan paquetes métricos y rara vez decamétricos, de calizas mudstone cremas y calizas con abundantes restos de organismos coralinos, generalmente fragmentados.

Sedimentológicamente se interpretan como margas de plataforma abierta de baja energía, con presencia de diversos ambientes arrecifales: Fore-reef, back-reef y...
canales intrarrecifales. La inestabilidad de la cuenca queda patente por la frecuente presencia de olistolitos y niveles *slumpizados*.

Los estudios de microfauna permiten datar esta unidad como Mioceno Superior - Plioceno Inferior.

2.2.5.2 Formación Gurabo

(19 de la base geológica)

La formación Gurabo ocupa aproximadamente el 6% de la superficie de la hoja de Santiago, el 10.8% de la de San José de las Matas y pequeños retazos en los alrededores de Navarrete en la hoja de Esperanza.

Está constituida de margas siltíticas con intercalaciones de siltitas calcáreas, localmente arenosas hacia techo. Pueden existir secciones de margas masivas homogéneas, de aspecto noduloso.

La potencia de la formación oscila entre 0 y 200m. El contacto con la Fm Cercado infrayacente (Calizas de Ahuyamas o Miembro inferior) es por falla en el borde de la meseta. A techo, la Fm Gurabo pasa progresivamente a la Fm Mao Adentro

Saunders (2004) realizó muestreos y dataciones de microfauna y macrofauna en cuatro ocurrencias de la Fm Gurabo. De estas dataciones resalta la posibilidad de una edad Mioceno superior terminal (Messiniense) para la base de la Fm Gurabo.

2.2.5.3 Formación Mao Adentro

(20 de la base geológica)

Esta formación está constituida, de muro a techo, por dos unidades: 1) calizas micríticas arrecifales carstificadas y calizas margosas coralinas que corresponden al facies típica y habitual de la formación, y 2) rellenos de cañones con coluviones y aluviones, constituidos de gravas, bloques, arenas y arcillas, localmente estratificadas en brechas monomícicas de calizas coralinas. Esta facies tiene importancia por su presentación muy peculiar y sus implicaciones en la evolución tectonoestrutural del la Cuenca del Cibao.
El espesor de la formación puede alcanzar los 400-450 m en la zona de su depocentro sedimentario (hojas de Mao y Moción), pero lo que aflora en la hoja de Esperanza no sobrepasa los 50 m.

Las calizas consisten petrográficamente en biomicritas a biomicroruditas con el 33-42% de aloquímicos, 39 al 48% de matriz micrítica recristalizada a pseudoeesperita y 14-21% de cemento esparítico en mosaico rellenando porosidad móldica y en fisuras. De los aloquímicos, del 98 al 100% corresponden a fósiles, existiendo en alguna muestra un 2% de oolitos. Los niveles areniscas calcáreas intercalados en la sucesión corresponden a litoarenitas con 34% de cuarzos mono y policristalinos, 3% de feldespato K, 26% de fragmentos de rocas calizas (principalmente fósiles de corales, gastrerópodos y bivalvos) y 13% de fragmentos de rocas metamórficas; el 18% es matriz micrítica, y como accesorio aparece glauconita (5%).

Sedimentológicamente, la unidad se originó en ambientes de plataforma interna carbonatada, y en ella están representadas facies que corresponden desde a núcleos arrecifales con los corales en posición de vida, posiblemente en muchos casos de escaso desarrollo tanto lateral como vertical (mud-mounts), a facies de “fore-reef” y "back-reef". La base de la formación, donde las facies recifales se interdigitan con margas de cuenca sugiere un sistema de canales en un talud recifal.

El contenido micropaleontológico de las muestras estudiadas ha proporcionado una asociación formada por foraminíferos que datan perfectamente el Plioceno inferior-medio.

2.2.5.4 Formación Mao

(21 de la base geológica)

La Formación Mao está compuesta por un conjunto de facies muy heterogéneas que reflejan un amplio abanico de medios sedimentarios, en su mayor parte de naturaleza costera. Tres unidades principales, de muro a techo, conforman esta formación. 1) Conglomerados y areniscas de grano medio en secuencias deltaicas, con niveles de carbonatación diagenéticas. 2) Areniscas finas con intercalaciones de lutitas beiges y arcillas con nivellilos dolomíticos a techo. 3) Unidad de Palo Amarillo, constituida de calizas con corales, brechas coralinas con intercalaciones de margas y cantos conglomeráticos, calizas bioclásticas, lumaquelas y conglomerado con matriz carbonatada. Esta última unidad aflora solo en la hoja de Santiago.
Se ha asignado a la Fm. Mao, en la cartografía 1:50.000, una edad Plioceno Medio - Plioceno Superior.

2.2.6 Cuaternario: Pleistoceno – Holoceno

(22 a 31 de la base geológica)

Se han distinguido en la cartografía básica del mapa de recursos minerales las siguientes formaciones:

- Unidad Licey al Medio. Arcillas endorreicas expansivas (22)
- Abanicos aluviales antiguos. Conglomerados principalmente calcáreos (23)
- Terrazas altas. Conglomerados con cantos redondeados (24)
- Terrazas medias. Conglomerados con matriz arenosa (25)
- Fondos de dolina. Arcillas de descalcificación (26)
- Abanicos aluviales modernos, conos de deyección y piedemonte. Bloques, gravas y arenas (27)
- Coluviones y deslizamientos. Gravas, arenas y limos (28)
- Zonas endorreicas. Lutitas, limos y arenas (29)
- Llanura de inundación y depósitos aluviales. Cantos, gravas y arenas (30)
- Depósitos antrópicos (31)

2.3 UNIDADES INTRUSIVAS Y ROCAS FILONIANAS

2.3.1 Peridotita de Loma Caribe y otras peridotitas serpininizadas

(1 de la base geológica)

Regionalmente, la Peridotita de Loma Caribe consiste en más 6 Km. de espesor de harzburgitas, dunitas y lherzolitas con espinela intensamente serpininizadas, con pequeños cuerpos de cromita podiformes e intrusiones de diques de gabros y doleritas (Lewis et al., 2002, 2006). Las doleritas son especialmente abundantes en la parte más alta de la peridotita donde forman sills de potencia métrica a decamétrica. La Peridotita de Loma Caribe constituye un fragmento del manto del océano proto-Caribeño, que ha experimentado una compleja historia de fusión (Lewis et al., 2006), y que ha sido levantada tectónicamente por la Zona de Falla de La Española.
La Peridotita de Loma Caribe está compuesta principalmente de harzburgitas con espinela, harzburgitas con clinopiroxeno, dunitas, lherzolitas y pequeños cuerpos de cromítitas podiformes aparecen también (Lewis et al., 2006, 2008). Las peridotitas normalmente están extensamente serpentinizadas y variablemente cizalladas, en particular hacia el contacto estructural superior. Sobre las harzburgitas serpentinizadas se ha desarrollado una importante alteración laterítica rica en Ni. Las reservas de Níquel han sido estimadas por la compañía Falconbridge Dominicana en 1-2Mt con un grado de 1.2% Ni.

Los principales tipos petrográficos de rocas peridotíticas menos serpentinizadas descritos en la Peridotita de Loma Caribe son:

- Harzburgitas masivas con espinela
- Dunitas con espinela
- Venas websteríticas
- Harzburgitas serpentinizadas y serpentinitas foliadas especialmente las deformadas por la Zona de Falla de La Española.

En la hoja de San José de Las Matas, dos lentejones de peridotitas de Loma Caribe serpentinizadas subrayan la traza septentrional de la ZFLE.

El primero afloramiento está ubicado en el borde SO de la Hoja, a 150m al Norte de la Carretera de El Rubio, en el contacto fallado entre los conglomerados de Inoa al Sur y los esquistos de Amina-Maimón al Norte. Los bloques de serpentinitas están aislados en las siltitas negras milonitizadas de la zona de falla.

El segundo afloramiento decamétrico, está ubicado en la extremidad este de los afloramientos de esquistos Amina-Maimón, en la carretera sin asfaltar de Guiaca a Loma el Verde.

Se trata de una brecha con cantos de conglomerados rojizos laminados por la falla en una matriz de peridotitas serpentinizadas, al contacto entre los conglomerados de Inoa al Sur y los esquistos de la Fm Amina-Maimón al Norte.

La potencia visible es de 2 metros. En el mapa aeromagnético no se destaca una anomalía, lo que confirma la ausencia de extensión de estas peridotitas por debajo de la cobertera sedimentaria miocena (Conglomerados de Bulla).
2.3.2 Batolito de El Bao. Tonalita hornblendítica.

(2 de la base geológica)

El batolito de El Bao (155 km²), aflora casi totalmente en la mitad Oeste de la Hoja de Jánico, excepto su terminación NNO en las esquinas de las hojas colindantes de Diferencia, San José de Las Matas y Monción, y su terminación Sur que roza la Hoja de Manabao. Su forma romboedral, sigmoidea, con el gran eje NNO-SSE, está relacionada con el juego de las fallas regionales transcurrentes: zona de Falla de la Española, que lo limita al norte, y las tres zonas de cizallas con anfibolitas y tonalitas foliadas de la Meseta, al Oeste, Las Placetas-Franco Bidó al Sur y Río Guanajuma al Este.

Los observaciones de campo y los datos petrológicos permiten establecer en el Batolito del Bao una secuencia intrusiva general, en la que los primeros magmas en cristalizar fueron los cumulados ultramáficos, gabros y dioritas, así como sus equivalentes metamórficos, posiblemente formando una serie ígnea comagmática. Posteriormente, intruyó el importante volumen de magma cuarzo-diorítico a tonalítico, que engloba y asimila gran parte el complejo gabróico-ultramáfico, que sólo queda preservado como pasillos de enclaves y mega enclaves de rocas metaultramáficas y anfibolíticas. Esta intrusión masiva tuvo lugar durante una etapa de deformación dúctil que produce fábricas en estado magmático y subsólidos en las tonalitas, y bandas de cizalla anfibolíticas en las rocas gabroícas. Las tonalitas con hornblenda evolucionan composicionalmente a leucotonalitas con hornblenda y biorita, que forman típicamente facies apicales y diques más competentes a la erosión en todo el sector de Mata Grande. Los diques máficos intruyen en la tonalita en un estadio muy tardío, desarrollando frente a ella contactos netos y bordes enfriados.

En el cuadrante de Santiago de los Caballeros el batolito de Bao aflora solo en la esquina SO de la hoja de San José de Las Matas, ocupando una superficie muy reducida (0.6km²). Forma parte de las estribaciones más orientales de la Cordillera Central antes de entrar en el Cinturón Intermedio, al Sur de la ZFLE. En este cuadrante solo se ha diferenciado la facies común, correspondiente a las tonalitas hornblendíticas, variablemente foliadas de grano medio-grueso.

2.3.3 Diques de cuarzo

Las rocas filonianas están representadas por diques, filones y vetas de cuarzo que se emplazan en la formación Amina – Maimón en la hoja de San José de las Matas.
2.4 HISTORIA GEOLÓGICA

La historia geológica de la isla comenzó en un dominio intraoceánico sobre un basamento de rocas básicas y ultrabásicas (Complejo Duarte) de edad Jurásico Superior-Cretácico Inferior (Placa Proto-Caribeña). La posición original de esta placa, donde se generó el primitivo arco isla, estaría situada en el borde oriental del Océano Pacífico, en la Placa Farallón (Pindell y Barret, 1990; Mann, 1991), o entre las placas Norte y Suramericana (Meschede y Frisch, 2002). Esta placa se habría desplazado progresivamente hacia el ENE, respecto a las placas de Norte y Sudamérica (Pindell, 1994). Una subducción intra oceánica durante el Cretácico Inferior en los terrenos situados al N de la Zona de Falla de La Española, daría lugar en un principio a la formación de un arco isla primitivo, representado aquí por la Formación Ámina-Maimón, y más al E del área de este Proyecto también por la Formación Los Ranchos (Kesler et al.,1991). Se trata de series volcánicas y volcán sedimentoarias correspondientes a un volcanismo bimodal, básico-intermedio y ácido, de afinidad toleítica que evoluciona a calcoalcalina, con mineralizaciones asociadas de sulfuros con leyes en Au locales (Pueblo Viejo, Cerro Verde). Al S de la Zona de Falla de La Española, durante el Cretácico Superior, en relación con los procesos de subducción se produce un importante magmatismo que da lugar por una parte a un nuevo arco volcánico (Arco II ó Formación Tireo) y numerosas intrusiones gabro-diorítico-tonalíticas, así como un engrosamiento de la corteza oceanica (Lewis et al., 2002). Este volcanismo también es bimodal, de afinidad toleítica que evoluciona a calcoalcalina, con predominio de series volcánicas o volcán sedimentoarias, según sectores, y mineralizaciones locales de sulfuros con leyes en Au (Restauración, El Yujo). Coinciendo con el volcanismo y prolongándose en el tiempo, se producen intrusiones subvolcánicas en forma de domos así como la intrusión de importantes macizos o plutones, siendo el más importante el Batolito de Loma de Cabrera.

Los procesos de subducción, a la vez que el magmatismo, producen la deformación de todos los materiales con desarrollo de pliegues muy variados, desde isoclinales, normalmente rotos y traspuestos, a pliegues suaves y abiertos, según los dominios o subdominios, y una esquistosidad regional planar o plano-linear, con fábricas locales S-C filoníticas a miloníticas, producidas por importantes bandas de cizalla dúctil a dúctil-frágil. Aunque estos procesos constituyen una secuencia continua, la intensidad de la deformación no se mantiene uniforme, si no con diversos picos de mayor intensidad o periodos deformativos y/o metamórficos. Estos procesos terminan al final del Cretácico Superior-Eoceno Inferior con la llegada a la zona de subducción del margen continental norteamericano, representado por la Plataforma
Carbonatada de Bahamas (Pardo et al., 1975; Dolan et al., 1991; Pérez-Estaún et al., 2002) y la consiguiente colisión.

A partir del Eoceno Medio cesa la actividad magmática en el sector del arco importantes fallas con desgarres sinistros, principalmente, con apertura de cuencas locales e intensa fracturación hasta la actualidad. Este es el caso de la Zona de Falla de La Española, con la Cuenca de Magua-Tavera ligada a ella, iniciada en el Paleoceno con basaltos y brechas basálticas de quimismo alcalino, y rellenada durante el Eoceno –Oligoceno Inferior por depósitos conglomeráticos, turbiditas y calizas arrecifales. Parte de estos materiales proceden de la denudación de la Cordillera Central, que se estaría elevando en esta época. Como consecuencia de la elevación se desarrolla una red fluvial que, con sentido Sur-Norte, va a excavar los valles en los que posteriormente se depositarán los conglomerados de la Formación Bulla. El depósito de esta formación tiene lugar durante un ascenso relativo el nivel del mar que va a provocar el relleno de los valles previamente excavados, probablemente de forma simultánea con la formación de los depósitos sintectónicos del borde Sur de la Cordillera. Este ascenso eustático culmina con el depósito de la Caliza de Monción y tras él se produce una caída relativa del nivel del mar que da lugar a una discontinuidad. Un nuevo ascenso relativo del nivel del mar tiene lugar durante el Mioceno Superior coincidiendo con un cambio en estructuración de la cuenca, marcado en la zona de estudio por el accidente de Cana-Gurabo, y que va a hacer que la línea de costa, y las facies mas someras se sitúen no al Sur, sino al Oeste. A partir de este momento la cuenca parece estar afectada por una serie de fallas extensionales que podrían estar en relacionadas con una relajación de esfuerzos tras el levantamiento transpresivo de la Cordillera Central. El máximo ascenso relativo tiene lugar en la parte alta del Mioceno superior, y tras el se produce una estabilización del nivel relativo durante la cual se depositan las Calizas de Ayahamas.

Una nueva caída del nivel del mar tiene lugar en la parte más alta del Mioceno Superior dando lugar a la discontinuidad de techo de la Formación Cercado. Esta caída relativa es más acentuada al oeste del Accidente de Cana-Gurabo, mientras que al Este está algo más atenuada por la mayor tasa de subsidencia que presenta este sector. Casi en el límite Mioceno-Plioceno, pero todavía en el Mioceno terminal, tiene lugar un nuevo ascenso relativo del nivel del mar, que da lugar al depósito de la Formación Gurabo. Una caída del nivel relativo del mar en el Plioceno Inferior daría lugar al desarrollo de las facies arrecifales de la Formación Mao Adentro.
La elevación de la Cordillera Central es un fenómeno que continúa en la actualidad, produciendo un encajamiento progresivo de la red fluvial y la colmatación de las cuencas a N y S de la cordillera.

2.5 HISTORIA GEOLÓGICA

La historia geológica de la isla comenzó en un dominio intraoceánico sobre un basamento de rocas básicas y ultrabásicas (Complejo Duarte) de edad Jurásico Superior-Cretácico Inferior (Placa Proto-Caribeña). La posición original de esta placa, donde se generó el primitivo arco isla, estaría situada en el borde oriental del Océano Pacífico, en la Placa Farallón (Pindell y Barret, 1990; Mann, 1991), o entre las placas Norte y Suramericana (Meschede y Frisch, 2002). Esta placa se habría desplazado progresivamente hacia el ENE, respecto a las placas de Norte y Sudamérica (Pindell, 1994). Una subducción intraoceánica durante el Cretácico Inferior en los terrenos situados al N de la Zona de Falla de La Española, daría lugar en un principio a la formación de un arco isla primitivo, representado aquí por la Formación Ámina-Maimón, y más al E del área de este Proyecto también por la Formación Los Ranchos (Kesler et al., 1991). Se trata de series volcánicas y volcano sedimentarias correspondientes a un volcanismo bimodal, básico-intermedio y ácido, de afinidad toleítica que evoluciona a calcoalcalina, con mineralizaciones asociadas de sulfuros con leyes en Au locales (Pueblo Viejo, Cerro Verde). Al S de la Zona de Falla de La Española, durante el Cretácico Superior, en relación con los procesos de subducción se produce un importante magmatismo que da lugar por una parte a un nuevo arco volcánico (Arco II ó Formación Tireo) y numerosas intrusiones gabro-diorítico-tonalíticas, así como un engrosamiento de la corteza oceánica (Lewis et al., 2002). Este volcanismo también es bimodal, de afinidad toleítica que evoluciona a calcoalcalina, con predominio de series volcánicas o volcán sedimentarias, según sectores, y mineralizaciones locales de sulfuros con leyes en Au (Restauración, El Yujo). Coinciendo con el volcanismo y prolongándose en el tiempo, se producen intrusiones subvolcánicas en forma de domos así como la intrusión de importantes macizos o plutones, siendo el más importante el Batolito de Loma de cabrera.

Los procesos de subducción, a la vez que el magmatismo, producen la deformación de todos los materiales con desarrollo de pliegues muy variados, desde isoclinales, normalmente rotos y traspuestos, a pliegues suaves y abiertos, según los dominios o subdominios, y una esquistosidad regional planar o plano-linear, con fábricas locales S-C filoníticas a miloníticas, producidas por importantes bandas de
cizalla dúctil a dúctil-frágil. Aunque estos procesos constituyen una secuencia continua, la intensidad de la deformación no se mantiene uniforme, si no con diversos picos de mayor intensidad o periodos deformativos y/o metamórficos. Estos procesos terminan al final del Cretácico Superior-Eoceno Inferior con la llegada a la zona de subducción del margen continental norteamericano, representado por la Plataforma Carbonatada de Bahamas (Pardo et al., 1975; Dolan et al., 1991; Pérez-Estaún et al., 2002) y la consiguiente colisión.

A partir del Eoceno Medio cesa la actividad magmática en el sector del arco importantes fallas con desgarres sinistros, principalmente, con apertura de cuencas locales e intensa fracturación hasta la actualidad. Este es el caso de la Zona de Falla de La Española, con la Cuenca de Magua-Tavera ligada a ella, iniciada en el Paleoceno con basaltos y brechas basálticas de quimismo alcalino, y rellenada durante el Eoceno –Oligoceno Inferior por depósitos conglomeráticos, turbiditas y calizas arrecifales. Parte de estos materiales proceden de la denudación de la Cordillera Central, que se estaría elevando en esta época. Como consecuencia de la elevación se desarrolla una red fluvial que, con sentido Sur-Norte, va a excavar los valles en los que posteriormente se depositarán los conglomerados de la Formación Bulla. El depósito de esta formación tiene lugar durante un ascenso relativo del nivel del mar que va a provocar el relleno de los valles previamente excavados, probablemente de forma simultánea con la formación de los depósitos sintectónicos del borde Sur de la Cordillera. Este ascenso eustático culmina con el depósito de la Caliza de Monción y tras él se produce una caída relativa del nivel del mar que da lugar a una discontinuidad. Un nuevo ascenso relativo del nivel del mar tiene lugar durante el Mioceno Superior coincidiendo con un cambio en estructuración de la cuenca, marcado en la zona de estudio por el accidente de Cana-Gurabo, y que va a hacer que la línea de costa, y las facies mas someras se sitúen no al Sur, sino al Oeste. A partir de este momento la cuenca parece estar afectada por una serie de fallas extensiva que podrían estar en relacionadas con una relajación de esfuerzos tras el levantamiento transpresivo de la Cordillera Central. El máximo ascenso relativo tiene lugar en la parte alta del Mioceno superior, y tras él se produce una estabilización del nivel relativo durante la cual se depositan las Calizas de Ayahamas.

Una nueva caída del nivel del mar tiene lugar en la parte más alta del Mioceno Superior dando lugar a la discontinuidad de techo de la Formación Cercado. Esta caída relativa es más acentuada al oeste del Accidente de Cana-Gurabo, mientras que al Este está algo más atenuada por la mayor tasa de subsidencia que presenta este
sector. Casi en el límite Mioceno-Plioceno, pero todavía en el Mioceno terminal, tiene lugar un nuevo ascenso relativo del nivel del mar, que da lugar al depósito de la Formación Gurabo. Una caída del nivel relativo del mar en el Plioceno Inferior daría lugar al desarrollo de las facies arrecifales de la Formación Mao Adentro.

La elevación de la Cordillera Central es un fenómeno que continúa en la actualidad, produciendo un encajamiento progresivo de la red fluvial y la colmatación de las cuencas a N y S de la cordillera.

3 RECURSOS MINERALES

Siguiendo la sistemática normal en este tipo de mapas, se agrupan los recursos en Minerales metálicos y no metálicos y Rocas industriales y ornamentales. No aparece ningún indicio de minerales energéticos.

Los indicios de ámbar se incluyen en el grupo de los minerales dentro del grupo de “piedras preciosas y semipreciosas”.

Los indicios se han numerado con 8 dígitos: Los 5 primeros corresponden al nº de la hoja 1:50000 y los tres siguientes al número del indicio dentro de cada hoja 1:50.00, empezando por el 001.

Por abreviar frecuentemente se designan los indicios por los cuatro últimos dígitos ya que los cuatro primeros, correspondiente al cuadrante 100.000, son los mismos para todos ellos.

Los indicios de minerales se describen por sustancias. Los de rocas por el tipo de recurso explotado (litología).

3.1 MINERALES METÁLICOS Y NO METÁLICOS

Dentro del cuadrante de Santiago se han representado y diferenciado indicios de oro aluvionar, cobre y de ámbar. Estos últimos son los únicos que tienen reflejo en una minería, aunque sea artesanal. Los indicios de las otras dos sustancias responden simplemente a afloramientos con algún vestigio de mineralización relacionada con las mismas.

3.1.1 Ámbar

(indicios 60741002 a 1008)
Situación y entorno geológico. Todos los indicios de ámbar se sitúan en la hoja de San Francisco de Arriba. En la figura 7 se muestra la distribución de los indicios dentro del cuadrante de Santiago de los Caballeros.

![Figura 7. Situación de los indicios de ámbar del cuadrante 6074 (Santiago)](image)

Todos los indicios se sitúan en el dominio de la Cordillera Septentrional, dentro de la Unidad de la Toca.

En el estudio citado anteriormente las explotaciones de ámbar de la Cordillera Septentrional se agrupan en seis sectores: Palo Alto – Las Ahuyamas, Los higos – La Bucara, Palo Quemado, La Cumbre, La Toca Los Cacao y Carlos Díaz (fig. 8).
Figura 8. Distribución de las zonas de ámbar de la cordillera septentrional estudiadas por el IGME (Espí, 1998).

Encajante. En la figura 9 se representa esquemáticamente la situación estratigráfica de las explotaciones de ámbar en cada uno de los sectores de la Cordillera Septentrional.

La roca encajante en la que se presenta el ámbar está constituido por capas de arcillas y areniscas finas con niveles de lignito, dentro de una secuencia flyshoide de bancos de ariscas gruesos alternando con capas de arcillas y lutitas carbonosas.

En la tabla 1 se representa las características del encajante de cada uno de los indicios visitados en el presente proyecto.
Figura 9. Reconstrucción estratigráfica del ámbar en la Cordillera Septentrional (Espí, 1998)
Foto 2. Detalle de la secuencia rítmica encajante del ámbar de Palo Quemado (indicio 60741008)

<table>
<thead>
<tr>
<th>INDICIO</th>
<th>DENOMINACIÓN O SECTOR</th>
<th>ENCAJANTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>60741002</td>
<td>Pulido (N Palo Quemado)</td>
<td>Alternancia de areniscas y arcillas</td>
</tr>
<tr>
<td>60741003</td>
<td>Sector Las Cumbres</td>
<td>Areniscas y capas de lignito</td>
</tr>
<tr>
<td>60741004</td>
<td>La Toca</td>
<td>Arenas con niveles de lignitos y arcillas.</td>
</tr>
<tr>
<td>60741005</td>
<td>La Búcar</td>
<td>Areniscas de grano grueso y areniscas grano medio grises</td>
</tr>
<tr>
<td>60741006</td>
<td>Altagracia - Palo Alto</td>
<td>Areniscas y arcillas carbonosas negruzcas</td>
</tr>
<tr>
<td>60741007</td>
<td>La Cumbre de Palo Alto</td>
<td>Arenisca gris en secuencia turbidítica de hasta 1 m. y capas de arcillas grises</td>
</tr>
<tr>
<td>60741008</td>
<td>Palo Quemado</td>
<td>Bancos metricos de areniscas grises. Estratificación N80ºE/20ºS</td>
</tr>
</tbody>
</table>

Tabla 1. Encajante de la mineralización de ámbar en los indicios visitados

Cuerpo mineralizado y mineralización. Se representa en la tabla 2
La morfología en todos los casos es estratiforme. Hay que recordar que cuando se habla de morfología de la mineralización se refiere a la morfología del “Cuerpo mineralizado” en relación con la roca encajante, no de la disposición de la mineralización dentro del cuerpo mineralizado. Esto último corresponde a la estructura y textura de la mineralización.

<table>
<thead>
<tr>
<th>INDICIO</th>
<th>DENOMINACIÓN O SECTOR</th>
<th>CUERPO MINERALIZADO Y MINERALIZACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>60741002</td>
<td>Pulido (N Palo Quemado)</td>
<td>Nivel de ámbar de 10 cm en secuencia margo arenosa de color gris. El ámbar aparece como “vetas” discontinuas paralela a la estratificación.</td>
</tr>
<tr>
<td>60741003</td>
<td>Sector Las Cumbres</td>
<td>Vetas de ámbar de 10 cm. Ámbar amarillo azul, rosa y verde</td>
</tr>
<tr>
<td>60741004</td>
<td>La Toca</td>
<td>Vetas de ámbar paralelas a la estratificación, en bancos de areniscas grises. Ámbar azul y amarillo</td>
</tr>
<tr>
<td>60741005</td>
<td>La Búcara</td>
<td>Ámbar en nódulos en nivel de 10 cm paralelo a la estratificación. Ámbar diseminado en nivel gris de arenisca</td>
</tr>
<tr>
<td>60741007</td>
<td>La Cumbre de Palo Alto</td>
<td>El cuerpo mineralizado está constituido por capas de arenisca gris en secuencia turbidítica de hasta 1 m de potencia. Vetas y diseminación de ámbar en las capas de arenisca.</td>
</tr>
<tr>
<td>60741008</td>
<td>Palo Quemado</td>
<td>El cuerpo mineralizado está constituido por los propios bancos de arenisca laminada a techo de capas de arcillas estériles. Diseminación de nódulos centimétricos de ámbar en las areniscas.</td>
</tr>
</tbody>
</table>

Tabla 2. Cuerpo mineralizado y mineralización de los indicios de ámbar visitados
Minería. (tabla 3) Toda la minería del ámbar es artesanal. Lo más parecido a una cierta organización del territorio es la Cooperativa de Altagracia en Palo Quemado.

En general se trabaja en cuadrillas controladas por un encargado que es el denunciante del "dominio minero".

Foto 3. Detalle de ámbar en arenisca. Indicio de la cooperativa de Altagracia (indicio 60741006)

Foto 4. Panorámica de las labores en la ladera de La Cumbre de Palo Alto (indicio 60741007)
La tabla 3 es un esquema simplificado de estado de la minería y labores de los indicios visitados

<table>
<thead>
<tr>
<th>INDICIO</th>
<th>DENOMINACIÓN O SECTOR</th>
<th>MINERÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>60741002</td>
<td>Pulido (N Palo Quemado)</td>
<td>Pozo y galería. Pequeña explotación abandonada con restos de entibado de madera. Los dueños tienen una tienda (ámbar y larimar) próxima al indicio en el paraje Pulido en la misma "carretera turística" Santiago a Puerto Plata</td>
</tr>
<tr>
<td>60741003</td>
<td>Sector Las Cumbres</td>
<td>Galerías siguiendo vetas de ámbar. Activa. Varias galerías en el entorno de La Cumbre.</td>
</tr>
<tr>
<td>60741004</td>
<td>La Toca</td>
<td>Galerías. Inaccesibles actualmente. Actividad intermitente. Zona de propiedad estatal</td>
</tr>
<tr>
<td>60741005</td>
<td>La Búcara</td>
<td>Una galería y un pozo inclinado 75° de 4 m de profundidad. Posible labor poco fructífera. Inactiva.</td>
</tr>
<tr>
<td>60741006</td>
<td>Altagracia - Palo Alto</td>
<td>Varias galerías y pozo inclinado con entibado de madera. 20 m³ de escombreras. Activa. Actualmente unos 4 operarios trabajando. La zona pertenece a la Cooperativa Altagracia.</td>
</tr>
<tr>
<td>60741007</td>
<td>La Cumbre de Palo Alto</td>
<td>Varios socavones, pozos y galerías. Escombreras dispersas. Explotación activa. Cada pozo es explotado por cuadrillas independientes, formadas por un capataz y 4 o 5 peones.</td>
</tr>
<tr>
<td>60741008</td>
<td>Palo Quemado</td>
<td>Dos galerías perpendiculares a la estratificación que luego siguen las capas con ámbar. Explotación intermitente. Actualmente parada. La galería más oriental está agotada. 50 m³ de escombreras</td>
</tr>
</tbody>
</table>

Tabla 3. Minería y labores de los indicios de ámbar del cuadrante 6074 (Santiago)
La situación y características de la minería del ámbar en la República Dominicana se refleja en el siguiente capítulo extraído del informe del IGME (Espí, op. Cit.), valido a día de hoy.

LA MINERÍA DEL ÁMBAR EN LA CORDILLERA SEPTENTRIONAL

Los sistemas de explotación empleados en el Ámbar dominicano en la cordillera Septentrional muestran la precariedad común a toda la pequeña minería. Es decir bajos rendimientos, deficiente aprovechamiento del recurso, peligrosísimas condiciones de trabajo, insalubridad, afección al entorno natural, etc.

El sistema.- En la Cordillera Septentrional la mayoría de las labores se realizan como mina de montaña, sin pozos, puesto que los grandes accidentes de rotura dejan al descubierto (por supuesto, no siempre) los horizontes productivos. De allí partirán dos galerías, perpendiculares al afloramiento y siempre en la capa con Ámbar (20 a 30 cm). El minero persigue cualquier indicio de Ámbar. Una vez localizada alguna bonanza la sigue con las galerías hasta que las condiciones de respiración son insuperables. Aun así se apura el avance al límite de lo tolerable.
A fin de provocar alguna renovación de aire las dos galerías que casi son paralelas se comunican cada 5 a 10 metros. Este sistema es casi ineficaz puesto que si al menos hubiera una ligera diferencia de presión por estar situada unos metros en el nivel superior a la de explotación, provocaría una ligera ventilación. En casos de éxito y a fin de avanzar lo máximo posible (hasta 170 m, según indicaciones) se han llegado a perforar 5 galerías paralelas. Los lugares representativos de este sistema son los grupos de Palo Alto y La Toca, aunque hay otros más (Los Cacao, Palo Alto - Las Auyamas y Palo Quemado).

No obstante existen condiciones aun más precarias que obvian la doble galería. Es más, parece como si este intento de mejora perteneciese al pasado puesto que en la actualidad apenas se practica, y ante la avalancha de nueva gente integrada en esta minería se desescombran antiguos trabajos, practicando el avance único y sinuoso. Esta precariedad también se manifiesta en la sección del avance, trabajando el mínimo posible, sin poder perforar en posición vertical. Por eso las galerías son meras gateras a veces con unos 70 cm de altura. "Los anchurones de explotación", es decir, las pequeñas plazas en donde se extrae el mineral productivo se vuelven a rellenar con el escombro extraído y los pilares de protección existen sólo por cuestión natural: se realizan cuando no existe Ámbar en ellos; es un pequeño macizo abandonado.

Los medios. Los avances tanto en horizontal como en vertical se efectúan sin explosivo alguno, empleando picos, punterolas y cinceles. En las zonas de explotación y debido a la increíble estrechez del avance se utiliza una pica con la cual se descuelga el techo hasta llegar a un horizonte estable(?). La posición de trabajo en cucilllas o casi tumbado. La iluminación se efectúa mediante velas. Si el nivel lo merece se apura el aire utilizando linternas eléctricas cuando la falta de aire impide la llama.

En muy contados casos se ha utilizado alguna motobomba de explosión para el desagüe de las filtraciones de las galerías. Con ello también surge el problema de la eliminación de los gases de la combustión. Los accidentes, graves en más de algún caso, se suceden con cierta frecuencia.

La explotación a cielo abierto no es usual, aunque ha existido algún caso, como en Los Cacao, en donde estuvo emplazado un bulldozer trabajando en zanja. Actualmente esta operación en cantera se realiza a mano. Consecuencia del empleo de este método es la remoción de la tierra vegetal y una apreciable deforestación. Afortunadamente son casos poco comunes a causa del precio de alquiler de la maquinaria, lejos de las posibilidades del minero del ámbar.

La seguridad. En relación con las condiciones de seguridad se constata:

- **Protección personal.** La indumentaria de trabajo no se caracteriza por ser la apropiada a las condiciones definidas que se viven en el interior de la mina. Ni casco protector, ni calzado, ni guantes de trabajo en las condiciones de humedad persistentes en algunas explotaciones.

- **Sostenimiento de huecos.** Aunque se procura extraer lo mínimo, tanto en el avance como en algunas plazas de explotación no se tiene especial cuidado en mantener pilares o macizos de protección. Es más, en lo que se tiene conocimiento las últimas muertes han acaecido por corrimientos de tierra o desplomes de techos. El material en donde se ubica el Ámbar generalmente es blando aunque existen también areniscas a techo muy competentes. En otros casos los techos más estables son las arcillas verdosas con glauconita. Aunque aparentemente son estables en condiciones de luz no muy amplia, se han observado "lisos" o planchas desprendidas. En muchos casos el hecho de almacenar el escombro extraído en el hueco creado, produce una cierta estabilización general. Apenas se utilizan cuadros de madera en las galerías.
- **Ventilación.** Ya ha quedado descrito el sistema empleado hace algunos años para asegurar algo de renovación de aire, pero hoy día ni tan siquiera las galerías paralelas suelen utilizarse. En los frentes la carencia de aire fresco resulta muy penosa, incluso llega a impedir la combustión de las velas, sistema generalmente empleado en la iluminación. No existe ninguna mina electrificada. En muchos casos la falta de aire es la limitación para proseguir la explotación ya en marcha.

- **Accesos y Sostenimiento.** En las explotaciones de relativa importancia los primeros metros de la caña de los pozos se reviste de madera. Esta especie de empalizada sirve para descolgarse por ella, casi siempre sin escalas. El peligro de accidentes siempre existe al estar los troncos de árboles mojados y con barro. También si se utiliza una polea para extraer el escombro esa misma cuerda sirve para salir el personal del interior.

![Foto 7. Minero trabajando en el interior de una galería, con rudimentarios entibados de madera. (indicio 60741007 – Palo Quemado)](image)

- **El desagüe.** Es la única mecanización introducida en muy contadas explotaciones. Sin embargo también es un elemento más de inseguridad. Al no existir ventilación natural los gases del motor no son extraídos hacia el exterior, provocando asfixia por envenenamiento con CO.

- **El polvo.** No se tiene conocimiento de silicosis en la población minera del Ámbar. No obstante y a pesar de arrancar a mano todo el material, no cabe duda de que existe inhalación de polvo de sílice. Muchas veces se trabaja en areniscas duras que hay que barrenar con martillo y cincel.
- No existen estadísticas de siniestralidad. La mayoría de los accidentes provocan traumatismos de diversa índole. Otra circunstancia agrava este hecho. La minería del ámbar está muy diseminada, a veces con difícil acceso. En caso de accidente grave la dificultad de evacuación rápida es enorme. Además casi siempre se carece de vehículo de cuatro ruedas para su transporte a un centro médico.

3.1.2 Oro Aluvionar

(índices 60743003, 3004 y 3005)

Los índices de oro registrados en el cuadrante de Santiago corresponden a explotaciones aluvionares artesanales y esporádicas en el extremo SO en el la hoja 1:50.000 San José de las Matas.

Situación y entorno geológico. Las zonas donde se han concentrado las extracciones aluviales de pepitas de oro se concentran en las secciones de Pedregal y Eugenio Perdomo pertenecientes al municipio de San José de las Matas, en la provincia de Santiago., en las cuencas del Arroyo Sui y Cañada de la Cienaguita, ambas depositarias de la margen derecha del río Amina (fig.10)

![Figura 10. Situación de los indicios de oro del cuadrante 6074 – Santiago de los Caballeros](image)
Geológicamente se sitúan en el tectono estructural Esquistos de Amina de la Cordillera Central.

Encajante y mineralización. Como ya se ha citado anteriormente los indicios de oro corresponden a extracciones de pepitas de oro de aluviales sobre sustrato de la Formación Cercado y Amina –Maimón. En la tabla 4 se resume las características más importantes observadas de la geología y mineralización de este grupo.

<table>
<thead>
<tr>
<th>INDICIO</th>
<th>GEOLOGÍA Y MINERALIZACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>60743003</td>
<td>Concentración aluvionar sobre sustrato Mioceno de la formación Cercado. Gran acumulación de bloques separados manualmente en posible explotación muy primitiva. (fig. 11)</td>
</tr>
<tr>
<td>60743004</td>
<td>Aluvial cuaternario sobre sustrato Mioceno de la formación Cercado Oro libre en pepitas (fig 11)</td>
</tr>
<tr>
<td>60743005</td>
<td>Aluvial sobre sustrato Cretácico de la formación Amina – Maimón (fig. 12)</td>
</tr>
</tbody>
</table>

Tabla 4. Geología y mineralización de los indicios de Au aluvionar del cuadrante 6074 – Santiago de los Caballeros
Figura 11. Esquema geológico de los indicios 3003 y 3004

Figura 12. Esquema geológico del indicio 3005
Minería. En la tabla 5 se resumen las características observadas en el entorno de las zonas lavadas artesanalmente para la obtención de oro

<table>
<thead>
<tr>
<th>INDICIO</th>
<th>MINERÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>60743003</td>
<td>Lavados en cauce del río. Numerosos vestigios de lavado consecuencia de la explotación artesanal del aluvial, principalmente en los fines de semana. Posible explotación primitiva y lavados artesanales actuales propio de economía sumergida. (foto 8)</td>
</tr>
<tr>
<td>60743004</td>
<td>Huellas y restos de lavados en la zona cóncava de dos meandros seguidos, en un tramo del arroyo Sui de unos 100 m de longitud (foto 9)</td>
</tr>
<tr>
<td>60743005</td>
<td>Restos de lavados en el valle y restos de instalación (?planta de concentración?) (foto 10) Titular del dominio Gregorio González. Se abandonó en 1998 (información de lugareños).</td>
</tr>
</tbody>
</table>

Tabla 5. Minería del oro aluvionar del cuadrante 6074 – Santiago de los Caballeros

Foto 8. Vestigios de lavados en Restos de lavado en la Cañada de la Cienaguita (indicío 60743003)
Foto 9. Restos de lavado en el cauce del Arroyo Sui

Foto 11. Indicio 3005. Restos de instalaciones
3.1.3 Cobre (óxidos y pirita)

Dentro de este grupo se han incluido 4 afloramientos con la presencia de oxidaciones y secundarios de cobre y en su caso diseminaciones muy débiles de pirita y / o calcopirita (fig 13). No existe ningún tipo de labor minera ni de exploración en estos afloramientos.

Figura 13. Situación de los indicios de Cu (óxidos, pirita) del cuadrante 6074 (Santiago de los Caballeros)

En la tabla 6 se representa las características de estas manifestaciones metálicas. El cuerpo mineralizado fundamentalmente es de morfología filoniana, diques de diabasa o de cuarzo. Solo en un caso se ha constatado una morfología estratiforme constituida por capas volcanoderivadas de grano fino con una muy débil diseminación de pirita y secundarios de cobre.
<table>
<thead>
<tr>
<th>Nº indicio</th>
<th>SUST.</th>
<th>PARAJE - SECCIÓN</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>60741001</td>
<td>Cu</td>
<td>La Auyama</td>
<td>Dique de diabasa N-S subvertical, de 30 cm de potencia con pintas de pirita y calcopirita y oxidaciones. Afloramiento en el lecho del Arroyo Pedro García unos 50 m aguas abajo del puente de la carretera.</td>
</tr>
<tr>
<td>60743001</td>
<td>Fe, pyr</td>
<td>Pedregal</td>
<td>Esquisto cuarzo clorítico-sericitico. Esquistosidad: 170º/30ºN. Cuarzos de exudación paralelos a la esquistosidad, de 5 cm de potencia máxima y aboudinados. Potencia de la banda mineralizada 5 m. óxidos de Fe impregnando la roca y "pintas" de pirita oxidada</td>
</tr>
<tr>
<td>60743002</td>
<td>Py</td>
<td>Pedregal</td>
<td>Esquistos sericiticos a muro y esquistos cuarzo sericiticos (tobas ácidas finas) a techo. Dos esquistosidades: S1 160º/52ºO y otra S2 de crenulación perpendicular a la anterior. Abundantes venas de cuarzo de exudación, subparalela a S1 de 1 a 10 cm de potencia en una banda de 1,20 m de potencia de zona silicificada. Pintas de pirita y óxidos en zona silicificada.</td>
</tr>
<tr>
<td>60744004</td>
<td>Cu</td>
<td>Loma del Aguacate</td>
<td>Diseminación débil de ox Fe y pintas de pirita y malaquita en niveles de tuftitas, cineritas verdosas y jaspe. S0 N5ºE/20ºO</td>
</tr>
</tbody>
</table>

Tabla 6. Características de los afloramientos con óxidos, pirita, Cu.

3.2 ROCAS INDUSTRIALES Y ORNAMENTALES

Se han representado 71 indicios. Aunque en número la mayoría son canteras para áridos de machaqueo, por su entidad resaltan también las canteras de caliza para cemento

En el grafico 1 se representa el número de canteras existentes por cada tipo de recurso. Se ha considerado solo el recurso principal.
Gráfico 1. Distribución del Número de canteras por tipo recurso (abreviatura del recurso en el listado de indicios).

El gráfico 2 permite una estimación de la entidad relativa de cada formación desde el punto de vista de su potencial como fuente de recursos.

Se describen las canteras por tipo de recurso
3.2.1 Caliza

En la tabla que sigue se resumen las características geológicas y mineras fundamentales observadas en el reconocimiento de campo de las canteras de este grupo.

<table>
<thead>
<tr>
<th>INDICIO</th>
<th>FORMACIÓN</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>60741002 VT</td>
<td>Brecha calcárea. Cantera cuadrada de 50 x 50m y 5 m de profundidad. Parcialmente transformada en laguna 2 frentes de 50 m de longitud y altura de 5 m. Inactiva Árido machaqueo. Para uso del propietario de la finca.</td>
<td></td>
</tr>
<tr>
<td>60741004 VT</td>
<td>Brecha calcárea karstificada. Pequeña trinchera artesanal de forma elíptica de 8 x 6 m y 2,5 m de profundidad. Otras en el entorno. Inactiva. Árido machaqueo</td>
<td></td>
</tr>
<tr>
<td>60741005 VT</td>
<td>Abandonada. Brecha caliza karstificada. Blanca rosácea-crema. S0 subhorizontal. 10 m de potencia. Pequeños desmontes superficiales aprovechando zonas de dolina. Árido machaqueo</td>
<td></td>
</tr>
<tr>
<td>60741006 VT</td>
<td>Inactiva. Brecha caliza karstificada. Pequeño desmonte de ladera de 10 m de longitud. Áridos machaqueo.</td>
<td></td>
</tr>
<tr>
<td>60741007 VT</td>
<td>Activa. Brecha calcárea, calcarenitas y areniscas. Bloques karstificados con espeleotemas. So N120º/20ºN Cantera grande rectangular abierta hacia el SSO, alargada en 125º. 150 x30m y 15 de talud Árido machaqueo</td>
<td></td>
</tr>
<tr>
<td>60741011 VT</td>
<td>Abandonada. Caliza. 70 x 70 m y altura de 15 m. Cantera de 1976 de preparación accesos al pico Pedro Diego de Obando Árido de machaqueo.</td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Tipo</td>
<td>Descripción</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>60742015</td>
<td>FM</td>
<td>Abandonada Margas y caliza margosa coralinas (Unidad de Palo Amarillo). Talud en el borde de la carretera de 3 m altura y 25 m de longitud. Caliche para relleno de firme de caminos.</td>
</tr>
<tr>
<td>60742018</td>
<td>FC</td>
<td>Activa. Brecha de caliza coralina, biomicrita. Blanquecina – anaranjada. Cantera abierta hacia el Oeste con forma trapezoidal con tres lados de 20, 15 y 20 m Árido machaqueo</td>
</tr>
<tr>
<td>60742022</td>
<td>FM</td>
<td>Activa. Calizas brechoides y calizas tableadas. Hacia la base el conjunto se hace más arcilloso. Potencia media de la unidad en la explotación 24 m. 8 cortas. Explotación de gran tamaño con numerosas cortas y planta de concentración en explotación. Arranque con explosivos y pala. Cantera propiedad de Cementos Cibao. Para fabricación de cemento. - Gran conjunto industrial constituido por numerosas canteras. - Planta de concentración para la obtención de la cal, Oficinas y talleres a la entrada a las canteras. - El conjunto abarca una superficie de aproximadamente 4 km² - Los frentes abiertos van variando secularmente en función de la demanda y de las características de la formación carbonatada. - Dada la gran extensión de la explotación se ha optado por situar las coordenadas del indicio en la zona terminal de los talleres, en el acceso a las canteras.</td>
</tr>
<tr>
<td>60744017</td>
<td>AQ</td>
<td>Abandonada "deslizamientos" Bloques principalmente de naturaleza calcárea, cantos, gravas y arcillas. Pequeño desmonte en ladera de 10 x 6 m y 2 m de altura. Árido Machaqueo</td>
</tr>
</tbody>
</table>
Abandonada. Túfitas calcáreas y limolitas con intercalaciones de calizas. Calizas cuarteadas que favorece la "trituración manual". So N60ºE/54ºSE. Cantera alargada de 60 m de longitud con talud de 8 m. de altura y fondo 10 m. Árido machaqueo

3.2.2 Detriticos: Conglomerados, arenas, areniscas y arcillas

Todas son para áridos de machaqueo o áridos naturales en caso de las graveras en aluvial. La única excepción son dos explotaciones de arcilla para cerámica (ladrillos).

En la tabla que sigue se resumen las características geológicas y mineras fundamentales observadas en el reconocimiento de campo de las canteras de este grupo.

<table>
<thead>
<tr>
<th>Indicio</th>
<th>Sustancia</th>
<th>Formación</th>
<th>Litología y minería</th>
</tr>
</thead>
<tbody>
<tr>
<td>60741001</td>
<td>Conglomerado</td>
<td>LT</td>
<td>Fm caótica de aglomerados y conglomerados en matriz margosa y calcarenitas. Niveles ocre con cantos de roca de basamento (serpentina y básicas) Trinchería de 65 m y 10 m de altura, alargada en dirección 116º. Inactiva.</td>
</tr>
<tr>
<td>60741003</td>
<td>Arenisca</td>
<td>LV</td>
<td>Arenisca arcósica con cemento carbonatado. Grano medio a grueso en los bancos más potentes. Los bancos más delgados son más arcillosos. Secuencia estrato creciente. Grande, con actividad intermitente. explotación en dos alturas: La superior semicorta de 15 m de profundidad</td>
</tr>
<tr>
<td>60741008</td>
<td>conglomerado</td>
<td>LV</td>
<td>Conglomerados polimicticos y areniscas. Cantos de caliza, roca básica, serpentinita, corales. Grande. Cantera en tres niveles. Actualmente la explotación está parada por desavenencias entre dueño y explotador</td>
</tr>
<tr>
<td>Código</td>
<td>Tipo</td>
<td>Ubicación</td>
<td>Descripción</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 60741009 | Conglomerado | LV | Conglomerado polimítico
Pequeño desmonte de ladera de 10 m de longitud por 3 de fondo. Altura 3 m.
Abandonada |
| 60741010 | conglomerado | LV | Conglomerado polimítico
Indicio insignificante de 15 m de longitud utilizado como basurero |
| 60741012 | Conglomerado | ALT | Bancos de 1/2 m de conglomerado, arenisca, brecha, margas azules. Cantos de serpentina y básicas.
Mediana, abandonada.
Desmonte en dos niveles. Longitud 30 m y fondo 30 m. talud máximo 20 m. |
| 60741013 | Conglomerado | LT | Conglomerados. Cantos de rocas volcánicas, bloques de conglomerado, areniscas y de caliza
Pequeña, abandonada.
Pequeña trinchera en camino de 35 m y 6 m de anchura. Altura máxima de 4 m. |
| 60742001 | Arena, conglomerado | T | Margas estratificadas horizontales biege bioclásticas con nivel de terrazas rojizas aluvial a techo.
Pequeño, abandonada.
Talud vertical de 25 m de longitud en la dirección 6° y 3 m de altura. |
| 60742002 | Arena, Conglomerado | T | Terraza 3 del río Yaque con canteras abandonadas. Substrato de margas beige claro nodulosa diaclasadas con rellenos de arenas conglomeráticas pequeña
Talud vertical de 2 m de altura, de 235 m de longitud. Labor insignificante y artesanal |
| 60742003 | Arena, Conglomerado | T | Cantos redondos aluviales residuales de terrazas 1 del río yaque.
Antigua gravera abandonada y ocupada actualmente por lavadero de las minas del margen derecho del río yaque (Planta Ochoa) |
| 60742004 | Arena, conglomerado | T | Gravas y arenas en matriz rojiza Grande, abandonada.
Excavación irregular en una superficie de unos 5000 m² de 2 m de profundidad |
| 60742005 | Arena, conglomerado | FM | Conglomerados y areniscas de grano medio en secuencias deltaicas con niveles con carbonatación diagenética.
Grande, activa.
Cantera en dirección 90° de 210 m de longitud y dos taludes N y S de 20 y 10 m de altura respectivamente. |
<table>
<thead>
<tr>
<th>Código</th>
<th>Localización</th>
<th>Estratificación</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>60742006</td>
<td>Arena, Conglomerado</td>
<td>Conglomerados y areniscas de grano medio en secuencias deltaicas con niveles con carbonatación diagenéticas. Bloques de conglomerados polimícticos. Gran desmonte irregular en la FM de 150 x 150 m aproximadamente y profundidad hasta 10 m.</td>
<td>Activa</td>
</tr>
<tr>
<td>60742007</td>
<td>Arena, Conglomerado</td>
<td>Alternancia discontinua de conglomerados polimícticos con cantos redondos dm a centimétricos, areniscas de grano grueso a fino y lutitas verdes. Bloques de conglomerados. Cantera de 153 x 90 m alargada en 170° y abierta hacia el N.</td>
<td>Activa</td>
</tr>
<tr>
<td>60742008</td>
<td>Conglomerado, arena</td>
<td>Alternancia de bancos métricos más competentes de conglomerados - microconglomerados con cemento carbonatado y niveles más deleznables de areniscas de 10 m de potencia. Cantera Grande de 119 x 47 m. Otros desmontes abandonados al oeste.</td>
<td>Activa</td>
</tr>
<tr>
<td>60742009</td>
<td>Conglomerado</td>
<td>Conglomerado polimíctico con cantos redondeados dm a centimétrico, areniscas grano grueso a fino y lutitas verde grisáceas. Frente continuo de explotación en tres grandes canteras, en una longitud total de 900 a 1000 m.</td>
<td>Abandonada</td>
</tr>
<tr>
<td>60742010</td>
<td>Arena, conglomerado</td>
<td>Areniscas y conglomerados. Cantos < 5 cm. Cantos blandos de arcilla. Cantos de cuarzo, roca básica y caliza. Estratificación subhorizontal Cantera de 30 x 25 m y 4,5 m de altura.</td>
<td>Abandonada</td>
</tr>
<tr>
<td>60742011</td>
<td>Arena, Conglomerado</td>
<td>Arenas y gravas. Series rítmicas de areniscas. Niveles bastantes continuos de conglomerados con cantos cm a decimétricos. Estratificación subhorizontal o buzando 5-10° al N Cantera de 200 x 130 m y 10 m de profundidad. Eje mayor en 36°. Abierta al SO</td>
<td>Inactiva</td>
</tr>
<tr>
<td>60742012</td>
<td>Arenisca, marga</td>
<td>Alternancia de areniscas y margas Dos pequeñas canteritas artesanales, inactivas.</td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Texto Descripción</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60742013</td>
<td>Areniscas con lentejones conglomeráticos polimícticos y margas a techo. Estratificación subhorizontal. Cantera de 260 x 67 m alargada en N-S. Talud máximo de 18 m, vertical con alto riesgo de desprendimiento. Activa.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60742014</td>
<td>Arena de grano grueso y conglomerado Cantera irregular a partir de frente de 100 m de longitud en dirección N-S. Abandonada.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60742016</td>
<td>Conglomerados, areniscas cementadas, margas verdosas. Dos pequeñas cortas, abandonadas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60742017</td>
<td>Serie arenosa en la mitad inferior. Banco de 20 a 40 cm en la mitad superior de arenisca cementada y microconglomerado y lentejones de conglomerado con cantos de 5 cm de rocas del basamento. Cantera grande niveles de 10 m de altura cada uno. Activa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60742020</td>
<td>Conglomerados, areniscas y margas - lutitas. Grande, activa. 3 canteras alineadas en dirección NE-SO. Planta machacadora y tolva (grancera). Pala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60742021</td>
<td>Conglomerados y areniscas de grano medio en secuencias deltaicas con niveles con carbonatación diagenéticas. Estratificación cruzada mediana Dos cortas. Explotación artesanal en la más occidental. La otra abandonada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60743001</td>
<td>Gravas y arenas en matriz rojiza. Niveles microconglomeráticos sobre niveles de arena con laminación cruzada. Conglomerados polimícticos con cantos de 5 cm centil en la base. Cantos de caliza, norita, básicas, cuarzo, roca volcánica morada, neis. Desmonte cuadrangular de 45 x 30 m. Actualmente terreno ocupado por casas rurales habitadas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Tipo</td>
<td>Formación</td>
<td>Descripción</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| 60743002 | conglomerado | T | Gravas y arenas en matriz rojiza pequeña
Zona reconvertida a basureros |
| 60743003 | Conglomerado | FM | Conglomerado polimíctico y arenisca de grano medio. Relación canto matriz > 80 %
Centil 10-15 cm
Cantos de roca básica de grano fino, Diorita, caliza.
Inactiva
Cantera en dos niveles de 8 y 12 m de fondo.
Longitud del nivel inferior 65 m en dirección 122° |
| 60743004 | Arenisca | FG | Arenas de 20 cm a 50 cm. A techo bloques brechados y caliches
desmonte de 25x5x3 m de altura
Abandonada |
| 60743005 | conglomerado, arena | T | Lentejones de conglomerados interestratificados en arenas. Bancos conglomeráticos de distinto calibre desde
microconglomerados a cantos de 15 cm.
Cantos de. Básica verde de grano fino, arenisca, caliza, granito s.l.
Mediana, intermitente
Varios puntos de extracción sobre la terraza |
| 60743006 | Conglomerado | CB | Conglomerados polimíctico con cantos ígneos y volcánicos, poco clasificados. Lentejones de arenisas. Relación Cantos /matriz > 50 %
Pequeño desmonte de 8 m de altura y 20 m de longitud.
Abandonada |
| 60743007 | conglomerado | T | Pequeña terraza colgada. Conglomerados
centil 25 cm. Gravas y arenas pequeña
Trinchera en el propio talud del camino.
Totalmente artesanal, inactiva |
| 60743008 | conglomerado, arena | MG | Conglomerado. Cantos monomícticos de roca verde fina. Centil 20 cm.
Pequeño desmonte en ángulo obtuso de 16 x18 m. Talud de 3,5 m
Inactiva |
| 60743009 | Conglomerado | MG | Conglomerados de cantos de rocas básicas verdes y moradas y matriz rojiza.
Centil 5 cm.
Relación canto/matriz < 50%
Inactiva
Pequeño desmonte cuadrangular de 40 x 35 m |
<table>
<thead>
<tr>
<th>Código</th>
<th>Tipo de material</th>
<th>Tipos de material</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>60743010</td>
<td>Arena y grava</td>
<td>FM</td>
<td>Areniscas y conglomerados Abandonada. pequeño desmonte, utilizado actualmente como basurero</td>
</tr>
<tr>
<td>60744001</td>
<td>Conglomerado</td>
<td>AQ</td>
<td>Conglomerados con granoselección positiva. 2 niveles. Cantos de rocas básicas, calizas, microconglomerado. Matriz arenosa. Cantos de 5 a 10 cm. Bloque de hasta 40 cm. Grande, inactiva Cantera en dos niveles. Longitud y Dirección paralela al talud: 40 m y 160°. Fondo 55 m</td>
</tr>
<tr>
<td>60744002</td>
<td>Conglomerado</td>
<td>AQ</td>
<td>Conglomerados y bloques. Bloques de brecha polimíctica con cemento carbonatado. Cantos de caliza y rocas básicas. Mediana, abandonada Talud de cantera alargado en 20° de 190 m de longitud. Fondo de 15 a 40 m. Muy colonizada por vegetación</td>
</tr>
<tr>
<td>60744003</td>
<td>Arena, conglomerado</td>
<td>AQ</td>
<td>Arenas y conglomerados con predominio de las primeras. Grande, abandonada. cantera rectangular de 90 x 80 m</td>
</tr>
<tr>
<td>60744004</td>
<td>Conglomerado, arena</td>
<td>AQ</td>
<td>conglomerados y arenas Grande, activa Cantera de 200 x 100 m. Alargada en 130°</td>
</tr>
<tr>
<td>60744005</td>
<td>Arena</td>
<td>AQ</td>
<td>Arena sílica de grano medio con clastos de caliza y roca básica. Laminación paralela. Caliches fragmentados y brechados a techo. Pequeña, inactiva. Corta semielíptica de 25 m de anchura máxima, en la dirección 140°, y fondo de 10 m.</td>
</tr>
<tr>
<td>60744006</td>
<td>Arena</td>
<td>AQ</td>
<td>Arenas mediana antigua corta ahora ocupada por planta asfáltica</td>
</tr>
<tr>
<td>60744007</td>
<td>conglomerado, Arena</td>
<td>AQ</td>
<td>Arenas y gravas, con arenas laminadas a techo. Grande, activa Transporte Guerrero Corta en rebaje. 2 niveles con una diferencia de cota de 5 m.</td>
</tr>
<tr>
<td>60744008</td>
<td>Conglomerado</td>
<td>AQ</td>
<td>Conglomerados principalmente calcáreos en matriz arenoso-arcillosa, arenas y limos. Grande, activa GUDICORP Desmonte y explanación y profundización. Talud rebajado a día de la visita, 10 m</td>
</tr>
<tr>
<td>Código</td>
<td>Material</td>
<td>Código</td>
<td>Estudio</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>60744009</td>
<td>Conglomerado</td>
<td>AQ</td>
<td></td>
</tr>
<tr>
<td>60744010</td>
<td>Conglomerado</td>
<td>AQ</td>
<td></td>
</tr>
<tr>
<td>60744011</td>
<td>Conglomerado</td>
<td>CBT</td>
<td></td>
</tr>
<tr>
<td>60744012</td>
<td>conglomerado</td>
<td>ALT</td>
<td></td>
</tr>
<tr>
<td>60744013</td>
<td>Conglomerado</td>
<td>ALT</td>
<td></td>
</tr>
<tr>
<td>60744014</td>
<td>conglomerado</td>
<td>ALT</td>
<td></td>
</tr>
<tr>
<td>60744015</td>
<td>arcilla</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>60744016</td>
<td>arcilla</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>60744018</td>
<td>conglomerado</td>
<td>AQ</td>
<td></td>
</tr>
</tbody>
</table>
60744019 Conglomerado AQ conglomerados de cantos predominantes de caliza y matriz arenosa. Estructura de las capas granocreciente. Relación de canto/matriz > 60 %. Bloques aislados de 1 m³. Mediana, Inactiva. Cantera semicircular de 50 m de diámetro, con dos niveles en el frente NE.

60744020 Arena, conglomerado T Arenas con cantos Grande, Inactiva. Desmontes poco profundos en una superficie de 3 o 4 Has. Restos de una tolva.

60744022 conglomerado AQ Gravas y cantos, arenas y limo-arcilla. PADODA. Abandonada. Zona totalmente restaurada y peneplanizada.

60744023 Conglomerado AQ conglomerados, arenas, limos y arcillas pequeñas, Inactiva.

60744024 conglomerado ALT Conglomerado polimóctico y arenas. Pequeña, Inactiva. Desmonte semicircular de 30 m de longitud en dirección 16°. Fondo 5 m.

60744025 Conglomerado AQ Alternancia de capas de conglomerados y arenas. Estratificación paralela y laminación cruzada. Cantera de 80 x 25 m de talud vertical. Alargada en dirección 42°. Inactiva.

60744026 Conglomerado AQ Conglomerados y arenas. Estratificación paralela y laminación cruzada. Mediana, Inactiva. Cantera alargada totalmente colonizada por vegetación, de 100 x 80 m.

Tabla 8. Características geológicas y mineras de las canteras de material detrítico.

4 BIBLIOGRAFÍA

ANEXO I. LISTADO DE MINERALIZACIONES
ABREVIATURAS DEL LISTADO DE INDICIOS MINERALES Y DE ROCAS
INDUSTRIALES Y ORNAMENTALES

Sustancia.-
Am: Ambar
Au: Oro
Cu: Cobre
Fe: Hierro
Py: pirita

Lut: lutita.
Mar: marga
Tuf: tufita

Mineralogía.-
am: ámbar
cp: calcopirita
go: goethita, limonita
mal: malaquita
oFe: óxidos de hierro
oro
py: pirita
q: cuarzo

Edad.-
Q2: Holoceno
Q1: Pleistoceno
Q: cuaternario
N2: Plioceno
N1: Mioceno
E3: Paleogeno
E2: Eoceno
E1: Paleoceno
K2: Cretácico Superior
K1: Cretácico Inferior

Morfología.-
A: aluvionar
E: Estratiforme
F: filoniana

Unidad Estratigráfica (UE).-
ALT: Altamira
AM: Formación Amina - Maimón
AQ: Aluvial cuaternario y deslizamientos recientes
CPG: Complejo Pedro García
CB: Conglomerado de Bulla
CBT: Cañada Bonita
FC: Formación Cercado
FG: Formación Gurabo
FM: Formación Mao
LH: Los Hidalgos
LT: La Toca
LV: Las Lavas
MG: Formación Magua
VT: Villa Trina
T: Terraza

Recurso.-
Arc: arcilla.
Are: Arena y limo.
Am: arenisca.
Clz: Caliza
Con: conglomerado, material de aluvión y terraza
Mar: marga

Unidad intrusiva (UI).-

Litología.-
Arc: arcilla.
Are: arena
Am: Arenisca
Bas: basalto
Br: Brecha sedimentaria
Brc: brecha calcárea
Brv: brecha volcánica
Cin: Cinerita
Cl: Calcarenitas
Clz: Caliza
Con: conglomerado.
Esq: esquisto
J: jaspe
Lim: limo

Dominio.-
DCS: Dominio de la Cordillera Septentrional
DMT: Dominio Magua - Tavera
DVC: Dominio del Valle del Cibao
LISTADO DE MINERALIZACIONES DEL CUADRANTE 6074: SANTIAGO DE LOS CABALLEROS

<table>
<thead>
<tr>
<th>Nº</th>
<th>U.T.M. X</th>
<th>U.T.M. Y</th>
<th>HOJA 50.000</th>
<th>NOMBRE, PARAJE O SECCIÓN</th>
<th>SUSTANCIA</th>
<th>MINERALOGÍA</th>
<th>MORFOLOGÍA</th>
<th>LITOLOGÍA</th>
<th>EDAD</th>
<th>UNIDAD</th>
<th>DOMINIO</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>60741001</td>
<td>322658</td>
<td>2170420</td>
<td>60741</td>
<td>La Auyama</td>
<td>Cu</td>
<td>cp, oFe, py</td>
<td>F/180º</td>
<td>Bas, Brv</td>
<td>K2</td>
<td>CPG</td>
<td>DCS</td>
<td>No labores mineras. Dique de diabasa de 30 cm potencia</td>
</tr>
<tr>
<td>60741003</td>
<td>330417</td>
<td>2162594</td>
<td>60741</td>
<td>Villa Gral. Benito Martínez</td>
<td>Am</td>
<td>am</td>
<td>E/290º</td>
<td>Am</td>
<td>E3–N1</td>
<td>LT</td>
<td>DCS</td>
<td>Varios Galerías en el entorno de La Cumbre. Ambar amarillo, azul, rosa y verde</td>
</tr>
<tr>
<td>60741004</td>
<td>331249</td>
<td>2161877</td>
<td>60741</td>
<td>La Toca</td>
<td>Am</td>
<td>am</td>
<td>E/280º</td>
<td>Am, Arc</td>
<td>E3–N1</td>
<td>LT</td>
<td>DCS</td>
<td>Galerías inaccesibles. Ambar azul y amarillo</td>
</tr>
<tr>
<td>60741005</td>
<td>324628</td>
<td>2163937</td>
<td>60741</td>
<td>La Búcara (Jacagua Adentro)</td>
<td>Am</td>
<td>am</td>
<td>E/90º</td>
<td>Am</td>
<td>E3–N1</td>
<td>LT</td>
<td>DCS</td>
<td>Galería y pozo inclinado. Nódulos y diseminación de ambar en nivel de 10 cm paralelo a la estratificación</td>
</tr>
<tr>
<td>60741006</td>
<td>324106</td>
<td>2165193</td>
<td>60741</td>
<td>Altagracia - Polo Alto (Jacagua Adentro)</td>
<td>Am</td>
<td>am</td>
<td>E/300º</td>
<td>Am, Arc</td>
<td>E3–N1</td>
<td>LT</td>
<td>DCS</td>
<td>Varios galerías y pozo inclinado con entibado de madera. Ambar y lignito</td>
</tr>
<tr>
<td>60741007</td>
<td>323566</td>
<td>2159201</td>
<td>60741</td>
<td>La Cumbre de Palo Alto (La Auyama)</td>
<td>Am</td>
<td>am</td>
<td>E/68º</td>
<td>Am, Arc</td>
<td>E3–N1</td>
<td>LT</td>
<td>DCS</td>
<td>Varios pozos, socavones y galerías. Explotación activa. Cada pozo explotado por una cuadrilla diferente.</td>
</tr>
<tr>
<td>60741008</td>
<td>323232</td>
<td>2159201</td>
<td>60741</td>
<td>Palo Quemado</td>
<td>Am</td>
<td>am</td>
<td>E/80º</td>
<td>Am</td>
<td>E3–N1</td>
<td>LT</td>
<td>DCS</td>
<td>Varios socavones. Explotación intermitente. Bancos de areniscas con diseminación y vetillas de ambar. A techo capa de arcillas estéril</td>
</tr>
<tr>
<td>60743001</td>
<td>300341</td>
<td>2140198</td>
<td>60743</td>
<td>Pedregal</td>
<td>Fe, Py</td>
<td>oFe, py</td>
<td>F/170º</td>
<td>Esq</td>
<td>K1</td>
<td>AM</td>
<td>DCS</td>
<td>No labores. Potencia de la banda mineralizada unos 5 m</td>
</tr>
<tr>
<td>60743002</td>
<td>300522</td>
<td>2140865</td>
<td>60743</td>
<td>Pedregal</td>
<td>Py</td>
<td>q, oFe, py</td>
<td>F/160º</td>
<td>Esq</td>
<td>K1</td>
<td>AM</td>
<td>DCS</td>
<td>No labores. Abundantes venas de cuarzo de 1 a 10 cm de potencia en una banda de 1,20 m de potencia de zona silicificada.</td>
</tr>
<tr>
<td>60743003</td>
<td>300020</td>
<td>2143434</td>
<td>60743</td>
<td>Pedregal</td>
<td>Au</td>
<td>oro</td>
<td>A</td>
<td>Con, Are</td>
<td>Q</td>
<td>AQ</td>
<td>DCS</td>
<td>Numerosos vestigios de “lavado” en cauce de Arroyo Sui</td>
</tr>
<tr>
<td>60743004</td>
<td>301841</td>
<td>2144083</td>
<td>60743</td>
<td>Eugenio Perdomo</td>
<td>Au</td>
<td>oro</td>
<td>A</td>
<td>Con, Are</td>
<td>Q</td>
<td>AQ</td>
<td>DCS</td>
<td>Vestigios de lavados en la zona cóncava de dos meandros seguidos, en un tramo del arroyo Sui de unos 100 m de longitud</td>
</tr>
<tr>
<td>60743005</td>
<td>296545</td>
<td>2142514</td>
<td>60743</td>
<td>Eugenio Perdomo</td>
<td>Au</td>
<td>oro</td>
<td>A</td>
<td>Con, Are</td>
<td>Q</td>
<td>AQ</td>
<td>DCS</td>
<td>Restos de lavados y de instalación. Se abandonó en 1998</td>
</tr>
<tr>
<td>60744001</td>
<td>302658</td>
<td>2173069</td>
<td>60744</td>
<td>Loma de Aguacate</td>
<td>Cu</td>
<td>oFe, py, mal</td>
<td>E/195º</td>
<td>Tuf, Cin, J</td>
<td>E2</td>
<td>LH</td>
<td>DCS</td>
<td>No labores. Afioramiento en camino de Cayolas a la carretera de El Aguacate</td>
</tr>
</tbody>
</table>
ANEXO II. LISTADO DE INDICIOS DE ROCAS INDUSTRIALES
LISTADO DE INDIOS Y EXPLOTACIONES DE ROCAS INDUSTRIALES Y ORNAMENTALES DEL CUADRANTE

6074: SANTIAGO DE LOS CABALLEROS

<table>
<thead>
<tr>
<th>Nº</th>
<th>U.T.M.</th>
<th>HOJA 50.000</th>
<th>NOMBRE, PARAJE O SECCIÓN</th>
<th>RECURSO</th>
<th>LITOLOGÍA</th>
<th>EDAD</th>
<th>UNIDAD</th>
<th>DOMINIO</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>60741001</td>
<td>331516</td>
<td>2167422</td>
<td>Gurabito de Yaroa</td>
<td>Con</td>
<td>Con</td>
<td>E3 – N1</td>
<td>LT</td>
<td>DCS</td>
<td>Desmonte en ladera para áridos</td>
</tr>
<tr>
<td>60741002</td>
<td>329496</td>
<td>2167497</td>
<td>Yasica Arriba</td>
<td>Clz</td>
<td>Brc</td>
<td>N1 – N2</td>
<td>VT</td>
<td>DCS</td>
<td>Cantera para árido</td>
</tr>
<tr>
<td>60741003</td>
<td>322608</td>
<td>2159341</td>
<td>Las Tres Cruces</td>
<td>Arn</td>
<td>Arn, Arc</td>
<td>E3 – N1</td>
<td>LV</td>
<td>DCS</td>
<td>Cantera grande, intermitente, para árido de machaqueo</td>
</tr>
<tr>
<td>60741004</td>
<td>341822</td>
<td>2161373</td>
<td>Puesto Grande</td>
<td>Clz</td>
<td>Brc</td>
<td>N2</td>
<td>VT</td>
<td>DCS</td>
<td>Pequeñas trincheras para árido de machaqueo</td>
</tr>
<tr>
<td>60741005</td>
<td>340216</td>
<td>2162780</td>
<td>Puesto Grande</td>
<td>Clz</td>
<td>Brc</td>
<td>N2</td>
<td>VT</td>
<td>DCS</td>
<td>Pequeño desmonte de ladera para árido</td>
</tr>
<tr>
<td>60741006</td>
<td>322214</td>
<td>2160028</td>
<td>Puesto Grande</td>
<td>Con</td>
<td>Con</td>
<td>E3 – N1</td>
<td>LV</td>
<td>DCS</td>
<td>Cantera grande activa, para árido de machaqueo</td>
</tr>
<tr>
<td>60741007</td>
<td>339641</td>
<td>2156756</td>
<td>Puesto Grande</td>
<td>Con</td>
<td>Con</td>
<td>E3 – N1</td>
<td>LV</td>
<td>DCS</td>
<td>Cantera grande activa, para árido de machaqueo</td>
</tr>
<tr>
<td>60741008</td>
<td>317806</td>
<td>2150925</td>
<td>El Ingenio Abajo</td>
<td>Con</td>
<td>Are</td>
<td>Q</td>
<td>T</td>
<td>DVC</td>
<td>Pequeña explotación abandonada. Margas estratificadas horizontales beige bioclásticas con nivel de terrazas rojizas aluvial a techo</td>
</tr>
<tr>
<td>60741009</td>
<td>320484</td>
<td>2149756</td>
<td>El Ingenio Abajo</td>
<td>Con</td>
<td>Are</td>
<td>Con</td>
<td>Q2</td>
<td>T</td>
<td>DVC</td>
</tr>
<tr>
<td>60741010</td>
<td>319346</td>
<td>2146624</td>
<td>Las Charcas</td>
<td>Con</td>
<td>Are</td>
<td>Q2</td>
<td>T</td>
<td>DVC</td>
<td>Terraza 1 del río Yaque del Norte</td>
</tr>
<tr>
<td>60741011</td>
<td>319080</td>
<td>2144643</td>
<td>Sábana Iglesia</td>
<td>Con</td>
<td>Are</td>
<td>Con</td>
<td>Q</td>
<td>T</td>
<td>DVC</td>
</tr>
<tr>
<td>60741012</td>
<td>320499</td>
<td>2146189</td>
<td>El papayo</td>
<td>Are, Con</td>
<td>Are, Con</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Conglomerados y areniscas de grano medio en secuencias delitascas con niveles con carbonatación diagenéticas</td>
</tr>
<tr>
<td>60741013</td>
<td>321224</td>
<td>2145531</td>
<td>Palo Quemado</td>
<td>Con, Are</td>
<td>Co, Are, Clz</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Conglomerados y areniscas de grano medio en secuencias delitascas con niveles con carbonatación diagenéticas. Bloques de conglomerados</td>
</tr>
<tr>
<td>60741014</td>
<td>321371</td>
<td>2145460</td>
<td>Palo Quemado</td>
<td>Are, Con</td>
<td>Are, Con, Lut</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Alternancia discontinua de conglomerados polímicritos, areniscas de grano grueso a fino y lutitas verdes. Bloques de conglomerados</td>
</tr>
<tr>
<td>60741015</td>
<td>321204</td>
<td>2146200</td>
<td>El Papayo</td>
<td>Con</td>
<td>Are</td>
<td>Con, Are, Lut</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
</tr>
<tr>
<td>60741016</td>
<td>322147</td>
<td>2146442</td>
<td>El papayo</td>
<td>Con</td>
<td>Con, Are, Lut</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Frente continuo de explotación en tres grandes canteras, en una longitud total de 900 a 1000 m. Activa.</td>
</tr>
<tr>
<td>N°</td>
<td>U.T.M.</td>
<td>HOJA 50.000</td>
<td>NOMBRE, PARAJE O SECCIÓN</td>
<td>RECURSO</td>
<td>LITOGÍA</td>
<td>EDAD</td>
<td>UNIDAD</td>
<td>DOMINIO</td>
<td>OBSERVACIONES</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>60742010</td>
<td>334322</td>
<td>2141578</td>
<td>Bonagua Arriba</td>
<td>Are, Con</td>
<td>Am, Are, Con</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Cantera mediana abandonada. Estratificación subhorizontal</td>
</tr>
<tr>
<td>60742011</td>
<td>333929</td>
<td>2141271</td>
<td>Reparadero</td>
<td>Are, Con</td>
<td>Are, Con, Arn</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Cantera grande inactiva. Para árido machaqueo</td>
</tr>
<tr>
<td>60742012</td>
<td>333549</td>
<td>2140049</td>
<td>Bonagua</td>
<td>Am, Mar</td>
<td>Am, Mar</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Dos pequeñas canteras artesanales para árido y relleno de casas</td>
</tr>
<tr>
<td>60742013</td>
<td>333627</td>
<td>2139810</td>
<td>Bonagua</td>
<td>Am, Con</td>
<td>Am, Con, Mar</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Cantera gran activa. Para árido machaqueo</td>
</tr>
<tr>
<td>60742014</td>
<td>335024</td>
<td>2138839</td>
<td>Arroyo Hondo Arriba</td>
<td>Am, Con</td>
<td>Am, Con</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Cantera irregular pequeña y abandonada.</td>
</tr>
<tr>
<td>60742015</td>
<td>331580</td>
<td>2140011</td>
<td>Bonagua</td>
<td>Clz, Mar</td>
<td>Clz, Mar</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Pequeña cantera abandonada, para caliche utilizado en relleno</td>
</tr>
<tr>
<td>60742016</td>
<td>328690</td>
<td>2141810</td>
<td>El Mamey</td>
<td>Con, Are</td>
<td>Con, Are, Mar</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Dos pequeñas cortas. Abandonadas</td>
</tr>
<tr>
<td>60742017</td>
<td>328494</td>
<td>2142275</td>
<td>El Mamey</td>
<td>Am, Con</td>
<td>Am, Con, Mar</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Cantera gran activa. Árido machaqueo</td>
</tr>
<tr>
<td>60742018</td>
<td>319256</td>
<td>2138839</td>
<td>López</td>
<td>Clz</td>
<td>Clz, Brc</td>
<td>N1</td>
<td>FC</td>
<td>DVC</td>
<td>Cantera de caliche pequeña, activa</td>
</tr>
<tr>
<td>60742019</td>
<td>312556</td>
<td>2140646</td>
<td>López - Sabana Iglesia</td>
<td>Con</td>
<td>Con, Are</td>
<td>Q2</td>
<td>T</td>
<td>DVC</td>
<td>Gravera activa en terraza del río Yaque del Norte con planta clasificadora</td>
</tr>
<tr>
<td>60742020</td>
<td>319256</td>
<td>2140646</td>
<td>Palo Quemado</td>
<td>Con</td>
<td>Con, Am, Mar, Lut</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>3 canteras alineadas en dirección NE-SO. Planta machacadora y tovla. Activa</td>
</tr>
<tr>
<td>60742021</td>
<td>321000</td>
<td>2146308</td>
<td>El Papayo</td>
<td>Con, Am</td>
<td>Con, Con, Clz</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Explotación mediana constituida por 2 canteras, una de ellas activa</td>
</tr>
<tr>
<td>60743001</td>
<td>315156</td>
<td>2156657</td>
<td>Sábana Grande del Balev I</td>
<td>Are, Con</td>
<td>Are, Con</td>
<td>Q2</td>
<td>T</td>
<td>DVC</td>
<td>Pequeño desmonte cuadrangular actualmente ocupado por casas rurales</td>
</tr>
<tr>
<td>60743002</td>
<td>316200</td>
<td>2153537</td>
<td>Sábana Grande del Balev I</td>
<td>Con</td>
<td>Con, are</td>
<td>Q2</td>
<td>T</td>
<td>DVC</td>
<td>Pequeños desmontes actualmente convertidos en basureros</td>
</tr>
<tr>
<td>60743003</td>
<td>312519</td>
<td>2152558</td>
<td>El Flumer</td>
<td>Con</td>
<td>Con, Con, Arn</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Cantera pequeña inactiva. Para árido</td>
</tr>
<tr>
<td>60743004</td>
<td>311455</td>
<td>2148182</td>
<td>Hato del Yaque-Guayacanal</td>
<td>Am</td>
<td>Am, Br, Clz</td>
<td>N2</td>
<td>FM</td>
<td>DVC</td>
<td>Pequeño desmonte en trinchera. Abandonada. Árido machaqueo</td>
</tr>
<tr>
<td>60743005</td>
<td>315926</td>
<td>2146685</td>
<td>Herradura</td>
<td>Con, Are</td>
<td>Con, Are</td>
<td>Q</td>
<td>T</td>
<td>DVC</td>
<td>Varios puntos de extracción sobre la terraza. Activa</td>
</tr>
<tr>
<td>60743006</td>
<td>315477</td>
<td>2139055</td>
<td>Los Ranchos</td>
<td>Con</td>
<td>Con, Am</td>
<td>N1</td>
<td>CB</td>
<td>DVC</td>
<td>Cantera pequeña abandonada. Conglomerados polimictico con cantos igneos y volcánicos, poco clasificados</td>
</tr>
<tr>
<td>60743007</td>
<td>305494</td>
<td>2139216</td>
<td>Cebú</td>
<td>Con</td>
<td>Con, Are</td>
<td>Q2</td>
<td>T</td>
<td>DVC</td>
<td>Pequeña trinchera en talud de camino. Pequeña terraza colgada</td>
</tr>
<tr>
<td>60743008</td>
<td>304392</td>
<td>2138580</td>
<td>Guama-Los Montones Abajo</td>
<td>Con, Are</td>
<td>Con, Are</td>
<td>E1 – E2</td>
<td>MG</td>
<td>DMT</td>
<td>Pequeño desmonte en ladera.</td>
</tr>
<tr>
<td>60743009</td>
<td>300201</td>
<td>2139425</td>
<td>Pedregal</td>
<td>Con</td>
<td>Con</td>
<td>E1 – E2</td>
<td>FM</td>
<td>DMT</td>
<td>Pequeño desmonte de ladera para áridos. Conglomerado de Inoa</td>
</tr>
</tbody>
</table>
LISTADO DE INDICIOS Y EXPLOTACIONES DE ROCAS INDUSTRIALES Y ORNAMENTALES DEL CUADRANTE

6074: SANTIAGO DE LOS CABALLEROS

<table>
<thead>
<tr>
<th>Nº</th>
<th>U.T.M. X</th>
<th>U.T.M. Y</th>
<th>HOJA 50.000</th>
<th>NOMBRE, PARAJE O SECCIÓN</th>
<th>RECURSO</th>
<th>LITÓLOGÍA</th>
<th>EDAD</th>
<th>UNIDAD UE</th>
<th>UI</th>
<th>DOMINIO</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>60743010</td>
<td>315765</td>
<td>2153646</td>
<td>6074</td>
<td>El Ingenio Abajo</td>
<td>Are, Con</td>
<td>Are, Con</td>
<td>N2</td>
<td>FM</td>
<td></td>
<td>DVC</td>
<td>Dos desmontes próximos, actualmente funcionan como basureros</td>
</tr>
<tr>
<td>60744001</td>
<td>307992</td>
<td>2162514</td>
<td>6074</td>
<td>Vuelta Larga</td>
<td>Con</td>
<td>Con</td>
<td>Q</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Gravera activa. Conglomerados con granoselección positiva. Cantos de rocas básicas, calizas y de microconglomerados. Bloques de hasta 40 cm.</td>
</tr>
<tr>
<td>60744002</td>
<td>308037</td>
<td>2162888</td>
<td>6074</td>
<td>Vuelta Larga</td>
<td>Con</td>
<td>Con</td>
<td>Q1</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Cantera mediana abandonada. Bloques de brecha polimítica con cemento carbonatado. Cantos de caliza y rocas básicas.</td>
</tr>
<tr>
<td>60744003</td>
<td>307266</td>
<td>2162520</td>
<td>6074</td>
<td>Vuelta Larga</td>
<td>Con</td>
<td>Are, Con</td>
<td>Q1</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Corta rectangular grande, abandonada.</td>
</tr>
<tr>
<td>60744004</td>
<td>307483</td>
<td>2162546</td>
<td>6074</td>
<td>Vuelta Larga</td>
<td>Con</td>
<td>Are, Con</td>
<td>Q1</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Explotación activa</td>
</tr>
<tr>
<td>60744005</td>
<td>306522</td>
<td>2162546</td>
<td>6074</td>
<td>Vuelta Larga</td>
<td>Are</td>
<td>Are</td>
<td>Q1</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Pequeña corta en ladera. Arena silicea de grano medio con clastos de caliza y roca básica. Caliches fragmentados y brechados a techo.</td>
</tr>
<tr>
<td>60744006</td>
<td>306522</td>
<td>2162546</td>
<td>6074</td>
<td>Vuelta Larga</td>
<td>Are</td>
<td>Are</td>
<td>Q1</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Antigua corta, ahora ocupada por planta asfáltica</td>
</tr>
<tr>
<td>60744007</td>
<td>306279</td>
<td>2162631</td>
<td>6074</td>
<td>Vuelta Larga</td>
<td>Con</td>
<td>Are, Con</td>
<td>Q1</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Cantera activa</td>
</tr>
<tr>
<td>60744008</td>
<td>305882</td>
<td>2165437</td>
<td>6074</td>
<td>Cañada Bonita</td>
<td>Con</td>
<td>Are, Lim</td>
<td>Q2</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Cantera activa. Trituración, molienda y clasificación en planta en la propia cantera.</td>
</tr>
<tr>
<td>60744009</td>
<td>304041</td>
<td>2165935</td>
<td>6074</td>
<td>Cañada Bonita</td>
<td>Con</td>
<td>Are, Arc, Lim</td>
<td>Q2</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Cantera grande activa</td>
</tr>
<tr>
<td>60744010</td>
<td>300930</td>
<td>2167211</td>
<td>6074</td>
<td>Pontón</td>
<td>Con</td>
<td>Con</td>
<td>Q1</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Pequeño desmonte de ladera. Bloques principalmente de naturaleza calcárea, cantos, gravas y arcillas.</td>
</tr>
<tr>
<td>60744011</td>
<td>311675</td>
<td>2172214</td>
<td>6074</td>
<td>Escalera</td>
<td>Con</td>
<td>E2</td>
<td>CBT</td>
<td>DCS</td>
<td></td>
<td></td>
<td>Corta en ladera con 4 bancos</td>
</tr>
<tr>
<td>60744012</td>
<td>314578</td>
<td>2169326</td>
<td>6074</td>
<td>Rancho Arriba</td>
<td>Con</td>
<td>Con</td>
<td>E2</td>
<td>ALT</td>
<td></td>
<td>DCS</td>
<td>Cantera pequeña inactiva, para áridos</td>
</tr>
<tr>
<td>60744013</td>
<td>311600</td>
<td>2170448</td>
<td>6074</td>
<td>El Limón</td>
<td>Con</td>
<td>Con</td>
<td>E2</td>
<td>ALT</td>
<td></td>
<td>DCS</td>
<td>Cantera abandonada, para áridos.</td>
</tr>
<tr>
<td>60744015</td>
<td>291615</td>
<td>2162772</td>
<td>6074</td>
<td>Peñuelia</td>
<td>Arc</td>
<td>Arc, Lim</td>
<td>Q2</td>
<td>T</td>
<td></td>
<td>DVC</td>
<td>Cantera activa. Arcilla para ladrillera</td>
</tr>
<tr>
<td>60744016</td>
<td>293521</td>
<td>2163731</td>
<td>6074</td>
<td>Peñuelia</td>
<td>Arc</td>
<td>Arc</td>
<td>Q2</td>
<td>T</td>
<td></td>
<td>DVC</td>
<td>Cantera intermitente. Arcilla para ladrillera</td>
</tr>
<tr>
<td>60744017</td>
<td>294708</td>
<td>2172498</td>
<td>6074</td>
<td>Jicomé</td>
<td>Clz</td>
<td>Clz</td>
<td>Q2</td>
<td>D</td>
<td></td>
<td>DVC</td>
<td>Pequeño desmonte de ladera. Bloques principalmente de naturaleza calcárea, cantos, gravas y arcillas.</td>
</tr>
<tr>
<td>60744018</td>
<td>30930</td>
<td>2162711</td>
<td>6074</td>
<td>Pontón</td>
<td>Con</td>
<td>Con</td>
<td>Q1</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Pequeño desmonte de ladera para áridos.</td>
</tr>
<tr>
<td>60744019</td>
<td>299476</td>
<td>2168519</td>
<td>6074</td>
<td>Pontón</td>
<td>Con</td>
<td>Con</td>
<td>Q2</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Cantera mediana inactiva, para áridos</td>
</tr>
<tr>
<td>60744020</td>
<td>303926</td>
<td>2160790</td>
<td>6074</td>
<td>Hatillo San Lorenzo</td>
<td>Are, Con</td>
<td>Are, Con</td>
<td>Q2</td>
<td>T</td>
<td></td>
<td>DVC</td>
<td>Desmontes poco profundos en una superficie de 3 o 4 Has. Inactiva</td>
</tr>
<tr>
<td>60744021</td>
<td>301882</td>
<td>2172857</td>
<td>6074</td>
<td>La Cayota</td>
<td>Clz</td>
<td>Clz</td>
<td>E2</td>
<td>LH</td>
<td></td>
<td>DCS</td>
<td>Pequeña cantera en ladera abandonada</td>
</tr>
<tr>
<td>60744022</td>
<td>305608</td>
<td>2164060</td>
<td>6074</td>
<td>Cañada Bonita</td>
<td>Con</td>
<td>Are, Arc, Lim</td>
<td>Q2</td>
<td>AQ</td>
<td></td>
<td>DVC</td>
<td>Cantera pequeña inactiva</td>
</tr>
</tbody>
</table>
LISTADO DE INDICIOS Y EXPLOTACIONES DE ROCAS INDUSTRIALES Y ORNAMENTALES DEL CUADRANTE

6074: SANTIAGO DE LOS CABALLEROS

<table>
<thead>
<tr>
<th>Nº</th>
<th>U.T.M.</th>
<th>HOJA 50.000</th>
<th>NOMBRE, PARAJE O SECCIÓN</th>
<th>RECURSO</th>
<th>LITOLOGÍA</th>
<th>EDAD</th>
<th>UNIDAD</th>
<th>DOMINIO</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>6074023</td>
<td>304447</td>
<td>2166797</td>
<td>Cañada Bonita</td>
<td>Con</td>
<td>Con, Are, Lim, Arc</td>
<td>Q2</td>
<td>AQ</td>
<td>DVC</td>
<td>Corta pequeña abandonada</td>
</tr>
<tr>
<td>6074024</td>
<td>311523</td>
<td>2168385</td>
<td>Macorís de Limón</td>
<td>Con</td>
<td>Con, Are</td>
<td>E2</td>
<td>ALT</td>
<td>DCS</td>
<td>Pequeña cantera inactiva, para áridos</td>
</tr>
<tr>
<td>6074025</td>
<td>308348</td>
<td>2165975</td>
<td>Jardines del Limón</td>
<td>Con</td>
<td>Con, Are</td>
<td>Q</td>
<td>AQ</td>
<td>DVC</td>
<td>Pequeña cantera inactiva, para áridos</td>
</tr>
<tr>
<td>6074026</td>
<td>308770</td>
<td>2164801</td>
<td>Las Lavas</td>
<td>Con</td>
<td>Con, Are</td>
<td>Q</td>
<td>AQ</td>
<td>DVC</td>
<td>Cantera abandonada, para áridos</td>
</tr>
</tbody>
</table>
Memoria del cuadrante Santiago de los Caballeros

República Dominicana

Consorcio IGME-BRGM-INYPSA

Cartografía geotemática

Diciembre 2010